These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27887815)

  • 81. Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries.
    Balogun MS; Qiu W; Jian J; Huang Y; Luo Y; Yang H; Liang C; Lu X; Tong Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23205-15. PubMed ID: 26439604
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode.
    Wei X; Tang C; Wang X; Zhou L; Wei Q; Yan M; Sheng J; Hu P; Wang B; Mai L
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26572-8. PubMed ID: 26605998
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Flowerlike vanadium sesquioxide: solvothermal preparation and electrochemical properties.
    Liu H; Wang Y; Li H; Yang W; Zhou H
    Chemphyschem; 2010 Oct; 11(15):3273-80. PubMed ID: 20821793
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Hierarchical LiZnVO4@C nanostructures with enhanced cycling stability for lithium-ion batteries.
    Zeng L; Huang X; Zheng C; Qian Q; Chen Q; Wei M
    Dalton Trans; 2015 May; 44(17):7967-72. PubMed ID: 25826739
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures.
    Zhang W; Zhou W; Wright JH; Kim YN; Liu D; Xiao X
    ACS Appl Mater Interfaces; 2014 May; 6(10):7292-300. PubMed ID: 24809928
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.
    Elia GA; Ulissi U; Mueller F; Reiter J; Tsiouvaras N; Sun YK; Scrosati B; Passerini S; Hassoun J
    Chemistry; 2016 May; 22(20):6808-14. PubMed ID: 26990320
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis.
    Meher SK; Justin P; Rao GR
    Nanoscale; 2011 Feb; 3(2):683-92. PubMed ID: 21180732
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Electrochemical Performances of Yttrium Doped Li3V(2-X)Y(X)(PO4)3/C Cathode Material for Lithium Secondary Battery.
    Jeong M; Kim HS; Bae DS; Lee CW; Jin BS
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8042-7. PubMed ID: 26726460
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications.
    Konikkara N; Kennedy LJ; Vijaya JJ
    J Hazard Mater; 2016 Nov; 318():173-185. PubMed ID: 27420389
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes.
    Seo SD; Jin YH; Lee SH; Shim HW; Kim DW
    Nanoscale Res Lett; 2011 May; 6(1):397. PubMed ID: 21711916
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The Influence of Carbonaceous Matrices and Electrocatalytic MnO₂ Nanopowders on Lithium-Air Battery Performances.
    Minguzzi A; Longoni G; Cappelletti G; Pargoletti E; Di Bari C; Locatelli C; Marelli M; Rondinini S; Vertova A
    Nanomaterials (Basel); 2016 Jan; 6(1):. PubMed ID: 28344267
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Defect-Engineered Nanostructured Ni/MOF-Derived Carbons for an Efficient Aqueous Battery-Type Energy Storage Device.
    Mofokeng TP; Ipadeola AK; Tetana ZN; Ozoemena KI
    ACS Omega; 2020 Aug; 5(32):20461-20472. PubMed ID: 32832799
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Study on low-temperature cycle failure mechanism of a ternary lithium ion battery.
    Wang S; Hu C; Yu R; Sun Z; Jin Y
    RSC Adv; 2022 Jul; 12(32):20755-20761. PubMed ID: 35919153
    [TBL] [Abstract][Full Text] [Related]  

  • 94. New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices.
    Minakshi M; Mitchell DRG; Munnangi AR; Barlow AJ; Fichtner M
    Nanoscale; 2018 Jul; 10(27):13277-13288. PubMed ID: 29971297
    [TBL] [Abstract][Full Text] [Related]  

  • 95. CuS nanoflakes, microspheres, microflowers, and nanowires: synthesis and lithium storage properties.
    Zhang B; Gao XW; Wang JZ; Chou SL; Konstantinov K; Liu HK
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1309-16. PubMed ID: 23646626
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Synthesis of calcium zincate powders by a chemical Co-precipitation method and their electrochemical performances.
    Yang CC; Chen PW; Wu CY
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4586-91. PubMed ID: 21128461
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Capacity Increase Investigation of Cu
    Li X; Zhang Z; Liu C; Lin Z
    Front Chem; 2018; 6():221. PubMed ID: 29946541
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Synthesis of rose-like ZnAl-LDH and its application in zinc-nickel secondary battery.
    Chen X; Yang Z; Wang L; Qin H
    Nanotechnology; 2019 Jan; 30(1):015602. PubMed ID: 30272569
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Screen-printed Cu circuit for low-Cost fabrication and its electrochemical migration characteristics.
    Jung KH; Kim KS; Park BG; Jung SB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9493-7. PubMed ID: 25971089
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A novel technology for on-site cupric oxide recovery from cupric chloride etchant waste.
    Kobayashi T; Kano K; Suzuki T; Kobayashi A
    Water Sci Technol; 2011; 64(2):416-22. PubMed ID: 22097016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.