BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27887829)

  • 1. Use of simulated epithelial lung fluid in assessing the human health risk of Pb in urban street dust.
    Dean JR; Elom NI; Entwistle JA
    Sci Total Environ; 2017 Feb; 579():387-395. PubMed ID: 27887829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil.
    Boisa N; Elom N; Dean JR; Deary ME; Bird G; Entwistle JA
    Environ Int; 2014 Sep; 70():132-42. PubMed ID: 24934854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro bioaccessibility of lead in surface dust and implications for human exposure: A comparative study between industrial area and urban district.
    Bi X; Li Z; Sun G; Liu J; Han Z
    J Hazard Mater; 2015 Oct; 297():191-7. PubMed ID: 25958267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of physicochemical parameters on bioaccessibility-adjusted hazard quotients for copper, lead and zinc in different grain size fractions of urban street dusts and soils.
    Dehghani S; Moore F; Vasiluk L; Hale BA
    Environ Geochem Health; 2018 Jun; 40(3):1155-1174. PubMed ID: 28600726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccessibility of lead in urban soil of Broken Hill, Australia: A study based on in vitro digestion and the IEUBK model.
    Yang K; Cattle SR
    Sci Total Environ; 2015 Dec; 538():922-33. PubMed ID: 26363147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic.
    Drahota P; Raus K; Rychlíková E; Rohovec J
    Environ Geochem Health; 2018 Aug; 40(4):1495-1512. PubMed ID: 28620816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the influence of traffic-related particles in urban dust using sequential selective extraction and oral bioaccessibility tests.
    Patinha C; Durães N; Sousa P; Dias AC; Reis AP; Noack Y; Ferreira da Silva E
    Environ Geochem Health; 2015 Aug; 37(4):707-24. PubMed ID: 26076813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing.
    Okorie A; Entwistle J; Dean JR
    Chemosphere; 2012 Feb; 86(5):460-7. PubMed ID: 22024094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China.
    Hu X; Zhang Y; Luo J; Wang T; Lian H; Ding Z
    Environ Pollut; 2011 May; 159(5):1215-21. PubMed ID: 21345560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mobility and human oral bioaccessibility of Zn and Pb in urban dusts of Estarreja (N Portugal).
    Patinha C; Reis AP; Dias AC; Abduljelil AA; Noack Y; Robert S; Cave M; Ferreira da Silva E
    Environ Geochem Health; 2015 Feb; 37(1):115-31. PubMed ID: 25027473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China.
    Lu Y; Yin W; Huang L; Zhang G; Zhao Y
    Environ Geochem Health; 2011 Apr; 33(2):93-102. PubMed ID: 20524051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bioaccessibility of lead (Pb) from vacuumed house dust on carpets in urban residences.
    Yu CH; Yiin LM; Lioy PJ
    Risk Anal; 2006 Feb; 26(1):125-34. PubMed ID: 16492186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of oral and lung bioaccessibility of Cd and Pb from smelter-impacted dust.
    Pelfrêne A; Douay F
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3718-3730. PubMed ID: 29168133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil or Dust for Health Risk Assessment Studies in Urban Environment.
    Gabarrón M; Faz A; Acosta JA
    Arch Environ Contam Toxicol; 2017 Oct; 73(3):442-455. PubMed ID: 28528420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain.
    Howard J; Weyhrauch J; Loriaux G; Schultz B; Baskaran M
    Environ Pollut; 2019 Dec; 255(Pt 3):113350. PubMed ID: 31671370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review.
    Zia MH; Codling EE; Scheckel KG; Chaney RL
    Environ Pollut; 2011 Oct; 159(10):2320-7. PubMed ID: 21616569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China.
    Liu Y; Ma J; Yan H; Ren Y; Wang B; Lin C; Liu X
    Ecotoxicol Environ Saf; 2016 Apr; 126():14-22. PubMed ID: 26707184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility and health risk assessment of Pb and Cd in urban dust in Hangzhou, China.
    Zhang G; Shao L; Li F; Yang F; Wang J; Jin Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):11760-11771. PubMed ID: 31975000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids.
    Kastury F; Karna RR; Scheckel KG; Juhasz AL
    Environ Pollut; 2020 Aug; 263(Pt B):. PubMed ID: 33633430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relevance of particle size distribution and bioaccessibility on human health risk assessment for trace elements measured in indoor dust.
    Doyi INY; Strezov V; Isley CF; Yazdanparast T; Taylor MP
    Sci Total Environ; 2020 Sep; 733():137931. PubMed ID: 32438193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.