These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 27887831)
21. Suitability of marginal biomass-derived biochars for soil amendment. Buss W; Graham MC; Shepherd JG; Mašek O Sci Total Environ; 2016 Mar; 547():314-322. PubMed ID: 26789369 [TBL] [Abstract][Full Text] [Related]
22. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Nielsen SS; Petersen LR; Kjeldsen P; Jakobsen R Chemosphere; 2011 Jul; 84(4):383-9. PubMed ID: 21529888 [TBL] [Abstract][Full Text] [Related]
23. Functional activity and functional gene diversity of a Cu-contaminated soil remediated by aided phytostabilization using compost, dolomitic limestone and a mixed tree stand. Xue K; Zhou J; Van Nostrand J; Mench M; Bes C; Giagnoni L; Renella G Environ Pollut; 2018 Nov; 242(Pt A):229-238. PubMed ID: 29980041 [TBL] [Abstract][Full Text] [Related]
24. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Li H; Ye X; Geng Z; Zhou H; Guo X; Zhang Y; Zhao H; Wang G J Hazard Mater; 2016 Mar; 304():40-8. PubMed ID: 26546702 [TBL] [Abstract][Full Text] [Related]
25. Assessment of biochar and zero-valent iron for in-situ remediation of chromated copper arsenate contaminated soil. Frick H; Tardif S; Kandeler E; Holm PE; Brandt KK Sci Total Environ; 2019 Mar; 655():414-422. PubMed ID: 30472643 [TBL] [Abstract][Full Text] [Related]
26. [Changes in bio-availability of immobilized Cu and Zn bound to phosphate in contaminated soils with different nutrient addition]. Xu MG; Zhang Q; Sun N; Shen HP; Zhang WJ Huan Jing Ke Xue; 2009 Jul; 30(7):2053-8. PubMed ID: 19775007 [TBL] [Abstract][Full Text] [Related]
27. Growth of Populus alba and its influence on soil trace element availability. Ciadamidaro L; Madejón E; Puschenreiter M; Madejón P Sci Total Environ; 2013 Jun; 454-455():337-47. PubMed ID: 23562686 [TBL] [Abstract][Full Text] [Related]
28. Morphological and functional responses of a metal-tolerant sunflower mutant line to a copper-contaminated soil series. Kolbas A; Kolbas N; Marchand L; Herzig R; Mench M Environ Sci Pollut Res Int; 2018 Jun; 25(17):16686-16701. PubMed ID: 29611120 [TBL] [Abstract][Full Text] [Related]
29. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Rizwan MS; Imtiaz M; Chhajro MA; Huang G; Fu Q; Zhu J; Aziz O; Hu H Environ Technol; 2016 Nov; 37(21):2679-86. PubMed ID: 26934087 [TBL] [Abstract][Full Text] [Related]
30. Effects of surface-modified nano-scale carbon black on Cu and Zn fractionations in contaminated soil. Cheng JM; Liu YZ; Wang HW Int J Phytoremediation; 2014; 16(1):86-94. PubMed ID: 24912217 [TBL] [Abstract][Full Text] [Related]
31. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
32. Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil. Gonzaga MIS; Mackowiak C; Quintão de Almeida A; Wisniewski A; Figueiredo de Souza D; da Silva Lima I; Nascimento de Jesus A Chemosphere; 2018 Jun; 201():278-285. PubMed ID: 29525655 [TBL] [Abstract][Full Text] [Related]
33. Co-planting Brassica napus and Salix nigra as a phytomanagement alternative for copper contaminated soil. Massenet A; Bonet A; Laur J; Labrecque M Chemosphere; 2021 Sep; 279():130517. PubMed ID: 33901893 [TBL] [Abstract][Full Text] [Related]
34. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays. Visioli G; Conti FD; Menta C; Bandiera M; Malcevschi A; Jones DL; Vamerali T Environ Monit Assess; 2016 Mar; 188(3):166. PubMed ID: 26884353 [TBL] [Abstract][Full Text] [Related]
35. Copper uptake, physiological response, and phytoremediation potential of Gonzaga MIS; de Jesus Santos JC; Ganassali Junior LF; Fontes PTN; Araújo JDS; Gonzaga TAS Int J Phytoremediation; 2022; 24(5):474-482. PubMed ID: 34353182 [TBL] [Abstract][Full Text] [Related]
36. Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil. Su J; Zeng Q; Li S; Wang R; Hu Y J Environ Manage; 2024 Mar; 355():120553. PubMed ID: 38471314 [TBL] [Abstract][Full Text] [Related]
37. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower. Kolbas A; Mench M; Herzig R; Nehnevajova E; Bes CM Int J Phytoremediation; 2011; 13 Suppl 1():55-76. PubMed ID: 22046751 [TBL] [Abstract][Full Text] [Related]
38. Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils. Kloss S; Zehetner F; Oburger E; Buecker J; Kitzler B; Wenzel WW; Wimmer B; Soja G Sci Total Environ; 2014 May; 481():498-508. PubMed ID: 24631613 [TBL] [Abstract][Full Text] [Related]
39. Impact of ectomycorrhizal colonization of hybrid poplar on the remediation of diesel-contaminated soil. Gunderson JJ; Knight JD; Van Rees KC J Environ Qual; 2007; 36(4):927-34. PubMed ID: 17526871 [TBL] [Abstract][Full Text] [Related]
40. Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes. Cano-Ruiz J; Ruiz Galea M; Amorós MC; Alonso J; Mauri PV; Lobo MC Chemosphere; 2020 Aug; 252():126576. PubMed ID: 32443267 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]