BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27887844)

  • 1. Anthraquinones from Morinda longissima and their insulin mimetic activities via AMP-activated protein kinase (AMPK) activation.
    Nguyen PH; Choi HS; Ha TKQ; Seo JY; Yang JL; Jung DW; Williams DR; Oh WK
    Bioorg Med Chem Lett; 2017 Jan; 27(1):40-44. PubMed ID: 27887844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: The relationship to AMPK activation.
    Zhu KN; Jiang CH; Tian YS; Xiao N; Wu ZF; Ma YL; Lin Z; Fang SZ; Shang XL; Liu K; Zhang J; Liu BL; Yin ZQ
    Phytomedicine; 2015 Aug; 22(9):837-46. PubMed ID: 26220631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells.
    Liu Q; Kim SB; Ahn JH; Hwang BY; Kim SY; Lee MK
    Nat Prod Res; 2012; 26(18):1750-4. PubMed ID: 22008000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes.
    Lee H; Li H; Jeong JH; Noh M; Ryu JH
    Fitoterapia; 2016 Jul; 112():90-6. PubMed ID: 27223849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico and in vivo study of anti-inflammatory activity of Morinda longissima (Rubiaceae) extract and phytochemicals for treatment of inflammation-mediated diseases.
    Mehallah H; Djebli N; Ngoc Khanh P; Xuan Ha N; Thi Ha V; Thu Huong T; Dinh Tung D; Manh Cuong N
    J Ethnopharmacol; 2024 Jun; 328():118051. PubMed ID: 38493905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes.
    Yamaguchi S; Katahira H; Ozawa S; Nakamichi Y; Tanaka T; Shimoyama T; Takahashi K; Yoshimoto K; Imaizumi MO; Nagamatsu S; Ishida H
    Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E643-9. PubMed ID: 15928020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New anthraquinone glycosides from the roots of Morinda citrifolia.
    Kamiya K; Hamabe W; Tokuyama S; Satake T
    Fitoterapia; 2009 Apr; 80(3):196-9. PubMed ID: 19233251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthraquinones with quinone reductase-inducing activity and benzophenones from Morinda citrifolia (noni) roots.
    Deng Y; Chin YW; Chai H; Keller WJ; Kinghorn AD
    J Nat Prod; 2007 Dec; 70(12):2049-52. PubMed ID: 18076142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-inflammatory naphthoates and anthraquinones from the roots of Morinda officinalis.
    Luo H; Wang Y; Qin Q; Wang Y; Xu J; He X
    Bioorg Chem; 2021 May; 110():104800. PubMed ID: 33761315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 17β-estradiol induces an interaction between adenosine monophosphate-activated protein kinase and the insulin signaling pathway in 3T3-L1 adipocytes.
    Kim JY; Jo KJ; Kim BJ; Baik HW; Lee SK
    Int J Mol Med; 2012 Oct; 30(4):979-85. PubMed ID: 22825002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two chalcones, 4-hydroxyderricin and xanthoangelol, stimulate GLUT4-dependent glucose uptake through the LKB1/AMP-activated protein kinase signaling pathway in 3T3-L1 adipocytes.
    Ohta M; Fujinami A; Kobayashi N; Amano A; Ishigami A; Tokuda H; Suzuki N; Ito F; Mori T; Sawada M; Iwasa K; Kitawaki J; Ohnishi K; Tsujikawa M; Obayashi H
    Nutr Res; 2015 Jul; 35(7):618-25. PubMed ID: 26077869
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Zhang R; Qin X; Zhang T; Li Q; Zhang J; Zhao J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30347867
    [No Abstract]   [Full Text] [Related]  

  • 13. A new anthraquinone from Morinda citrifolia roots.
    Ee GC; Wen YP; Sukari MA; Go R; Lee HL
    Nat Prod Res; 2009; 23(14):1322-9. PubMed ID: 19735047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial anthraquinones from Morinda angustifolia.
    Xiang W; Song QS; Zhang HJ; Guo SP
    Fitoterapia; 2008 Dec; 79(7-8):501-4. PubMed ID: 18621113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of glucose uptake and improvement of insulin resistance by aromadendrin.
    Zhang WY; Lee JJ; Kim IS; Kim Y; Myung CS
    Pharmacology; 2011; 88(5-6):266-74. PubMed ID: 22056597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 7-O-methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro.
    Zhang WY; Lee JJ; Kim IS; Kim Y; Park JS; Myung CS
    Biol Pharm Bull; 2010; 33(9):1494-9. PubMed ID: 20823563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WSF-P-1, a novel AMPK activator, promotes adiponectin multimerization in 3T3-L1 adipocytes.
    Wang Y; Zhang Y; Wang Y; Peng H; Rui J; Zhang Z; Wang S; Li Z
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1529-1535. PubMed ID: 28608766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triterpenoids from
    Fang ZJ; Shen SN; Wang JM; Wu YJ; Zhou CX; Mo JX; Lin LG; Gan LS
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30621331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase.
    Wang YQ; Dong Y; Yao MH
    Clin Exp Pharmacol Physiol; 2009 Aug; 36(8):843-9. PubMed ID: 19298540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A newly synthetic chromium complex-chromium (D-phenylalanine)3 activates AMP-activated protein kinase and stimulates glucose transport.
    Zhao P; Wang J; Ma H; Xiao Y; He L; Tong C; Wang Z; Zheng Q; Dolence EK; Nair S; Ren J; Li J
    Biochem Pharmacol; 2009 Mar; 77(6):1002-10. PubMed ID: 19073152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.