These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 27888460)
1. Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea. Lee JW; Kwon KK; Bahk JJ; Lee DH; Lee HS; Kang SG; Lee JH J Microbiol; 2016 Dec; 54(12):814-822. PubMed ID: 27888460 [TBL] [Abstract][Full Text] [Related]
2. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. Niu M; Fan X; Zhuang G; Liang Q; Wang F FEMS Microbiol Ecol; 2017 Sep; 93(9):. PubMed ID: 28934399 [TBL] [Abstract][Full Text] [Related]
3. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Harrison BK; Zhang H; Berelson W; Orphan VJ Appl Environ Microbiol; 2009 Mar; 75(6):1487-99. PubMed ID: 19139232 [TBL] [Abstract][Full Text] [Related]
4. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the methanogen-related archaeal population structure in shallow sediments of the Pearl River Estuary, Southern China. Chen J; Wang F; Zheng Y; Jiang L; Xiao X J Basic Microbiol; 2014 Jun; 54(6):482-90. PubMed ID: 23712531 [TBL] [Abstract][Full Text] [Related]
6. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Stokke R; Roalkvam I; Lanzen A; Haflidason H; Steen IH Environ Microbiol; 2012 May; 14(5):1333-46. PubMed ID: 22404914 [TBL] [Abstract][Full Text] [Related]
7. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
8. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. Biddle JF; Cardman Z; Mendlovitz H; Albert DB; Lloyd KG; Boetius A; Teske A ISME J; 2012 May; 6(5):1018-31. PubMed ID: 22094346 [TBL] [Abstract][Full Text] [Related]
9. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Teske A; Hinrichs KU; Edgcomb V; de Vera Gomez A; Kysela D; Sylva SP; Sogin ML; Jannasch HW Appl Environ Microbiol; 2002 Apr; 68(4):1994-2007. PubMed ID: 11916723 [TBL] [Abstract][Full Text] [Related]
10. A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments. Håvelsrud OE; Haverkamp TH; Kristensen T; Jakobsen KS; Rike AG BMC Microbiol; 2011 Oct; 11():221. PubMed ID: 21970369 [TBL] [Abstract][Full Text] [Related]
11. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Meyerdierks A; Kube M; Kostadinov I; Teeling H; Glöckner FO; Reinhardt R; Amann R Environ Microbiol; 2010 Feb; 12(2):422-39. PubMed ID: 19878267 [TBL] [Abstract][Full Text] [Related]
12. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Lloyd KG; Lapham L; Teske A Appl Environ Microbiol; 2006 Nov; 72(11):7218-30. PubMed ID: 16980428 [TBL] [Abstract][Full Text] [Related]
13. ANME-1 archaea may drive methane accumulation and removal in estuarine sediments. Kevorkian RT; Callahan S; Winstead R; Lloyd KG Environ Microbiol Rep; 2021 Apr; 13(2):185-194. PubMed ID: 33462984 [TBL] [Abstract][Full Text] [Related]
14. Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. Webster G; Sass H; Cragg BA; Gorra R; Knab NJ; Green CJ; Mathes F; Fry JC; Weightman AJ; Parkes RJ FEMS Microbiol Ecol; 2011 Aug; 77(2):248-63. PubMed ID: 21477007 [TBL] [Abstract][Full Text] [Related]
15. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea. Lloyd KG; Alperin MJ; Teske A Environ Microbiol; 2011 Sep; 13(9):2548-64. PubMed ID: 21806748 [TBL] [Abstract][Full Text] [Related]
16. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Lösekann T; Knittel K; Nadalig T; Fuchs B; Niemann H; Boetius A; Amann R Appl Environ Microbiol; 2007 May; 73(10):3348-62. PubMed ID: 17369343 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Winkel M; Mitzscherling J; Overduin PP; Horn F; Winterfeld M; Rijkers R; Grigoriev MN; Knoblauch C; Mangelsdorf K; Wagner D; Liebner S Sci Rep; 2018 Jan; 8(1):1291. PubMed ID: 29358665 [TBL] [Abstract][Full Text] [Related]
18. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Meyerdierks A; Kube M; Lombardot T; Knittel K; Bauer M; Glöckner FO; Reinhardt R; Amann R Environ Microbiol; 2005 Dec; 7(12):1937-51. PubMed ID: 16309392 [TBL] [Abstract][Full Text] [Related]
19. Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea. Lazar CS; Dinasquet J; L'Haridon S; Pignet P; Toffin L Antonie Van Leeuwenhoek; 2011 Nov; 100(4):639-53. PubMed ID: 21751028 [TBL] [Abstract][Full Text] [Related]
20. Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. Cui H; Su X; Chen F; Holland M; Yang S; Liang J; Su P; Dong H; Hou W Mar Environ Res; 2019 Feb; 144():230-239. PubMed ID: 30732863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]