These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27888726)

  • 21. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal.
    Li XG; Lv Y; Ma BG; Jian SW; Tan HB
    Bioresour Technol; 2011 Oct; 102(20):9783-7. PubMed ID: 21865028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).
    Idris SS; Abd Rahman N; Ismail K; Alias AB; Abd Rashid Z; Aris MJ
    Bioresour Technol; 2010 Jun; 101(12):4584-92. PubMed ID: 20153633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of sewage sludge blending on the coal combustion: a thermogravimetric assessment.
    Otero M; Gómez X; García AI; Morán A
    Chemosphere; 2007 Nov; 69(11):1740-50. PubMed ID: 17624399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.
    Buratti C; Barbanera M; Bartocci P; Fantozzi F
    Bioresour Technol; 2015 Jun; 186():154-162. PubMed ID: 25817025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.
    Zhang K; Zhang K; Cao Y; Pan WP
    Bioresour Technol; 2013 Mar; 131():325-32. PubMed ID: 23370215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.
    Sadhukhan AK; Gupta P; Goyal T; Saha RK
    Bioresour Technol; 2008 Nov; 99(17):8022-6. PubMed ID: 18485697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermogravimetric and Kinetic Analysis of Co-Combustion of Waste Tires and Coal Blends.
    Pan DL; Jiang WT; Guo RT; Huang Y; Pan WG
    ACS Omega; 2021 Mar; 6(8):5479-5484. PubMed ID: 33681588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal.
    Onenc S; Retschitzegger S; Evic N; Kienzl N; Yanik J
    Waste Manag; 2018 Jan; 71():192-199. PubMed ID: 29097128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shea meal and cotton stalk as potential fuels for co-combustion with coal.
    Munir S; Nimmo W; Gibbs BM
    Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermochemical and Toxic Element Behavior during Co-Combustion of Coal and Municipal Sludge.
    Chen Y; Gui H; Xia Z; Chen X; Zheng L
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.
    Zhang L; Duan F; Huang Y
    Bioresour Technol; 2015 Apr; 181():62-71. PubMed ID: 25638405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.
    Guo F; Zhong Z
    Environ Pollut; 2018 Aug; 239():21-29. PubMed ID: 29635091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal degradations of wood biofuels, coals and hydrolysis lignin from the Russian Federation: Experiments and modeling.
    Popova E; Chernov A; Maryandyshev P; Brillard A; Kehrli D; Trouvé G; Lyubov V; Brilhac JF
    Bioresour Technol; 2016 Oct; 218():1046-54. PubMed ID: 27455128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uncertainty analysis in probabilistic design of detention rockfill dams using Monte-Carlo simulation model and probabilistic frequency analysis of stability factors.
    Riyahi MM; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):28035-28052. PubMed ID: 36385345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.
    Ferrara F; Orsini A; Plaisant A; Pettinau A
    Bioresour Technol; 2014 Nov; 171():433-41. PubMed ID: 25226060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.
    Ullah H; Liu G; Yousaf B; Ali MU; Abbas Q; Zhou C
    Bioresour Technol; 2017 Dec; 245(Pt A):73-80. PubMed ID: 28892708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study.
    Haykiri-Acma H; Yaman S
    Waste Manag; 2008 Nov; 28(11):2077-84. PubMed ID: 17964772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.
    Gao Y; Tahmasebi A; Dou J; Yu J
    Bioresour Technol; 2016 May; 207():276-84. PubMed ID: 26894568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.
    Zhou C; Liu G; Wang X; Qi C; Hu Y
    Bioresour Technol; 2016 Aug; 214():218-224. PubMed ID: 27136608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.