BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 27888797)

  • 1. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin.
    Svoboda LK; Bailey N; Van Noord RA; Krook MA; Harris A; Cramer C; Jasman B; Patel RM; Thomas D; Borkin D; Cierpicki T; Grembecka J; Lawlor ER
    Oncotarget; 2017 Jan; 8(1):458-471. PubMed ID: 27888797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Menin regulates the serine biosynthetic pathway in Ewing sarcoma.
    Svoboda LK; Teh SSK; Sud S; Kerk S; Zebolsky A; Treichel S; Thomas D; Halbrook CJ; Lee HJ; Kremer D; Zhang L; Klossowski S; Bankhead AR; Magnuson B; Ljungman M; Cierpicki T; Grembecka J; Lyssiotis CA; Lawlor ER
    J Pathol; 2018 Jul; 245(3):324-336. PubMed ID: 29672864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML.
    Heikamp EB; Henrich JA; Perner F; Wong EM; Hatton C; Wen Y; Barwe SP; Gopalakrishnapillai A; Xu H; Uckelmann HJ; Takao S; Kazansky Y; Pikman Y; McGeehan GM; Kolb EA; Kentsis A; Armstrong SA
    Blood; 2022 Feb; 139(6):894-906. PubMed ID: 34582559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of HOX genes is prevalent in Ewing sarcoma and is associated with altered epigenetic regulation of developmental transcription programs.
    Svoboda LK; Harris A; Bailey NJ; Schwentner R; Tomazou E; von Levetzow C; Magnuson B; Ljungman M; Kovar H; Lawlor ER
    Epigenetics; 2014 Dec; 9(12):1613-25. PubMed ID: 25625846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct pathways affected by menin versus MLL1/MLL2 in MLL-rearranged acute myeloid leukemia.
    Chen Y; Jones KL; Anastassiadis K; Kranz A; Stewart AF; Grembecka J; Meyerson M; Ernst P
    Exp Hematol; 2019 Jan; 69():37-42. PubMed ID: 30315824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of VTP-50469, a menin-MLL1 inhibitor, against Ewing sarcoma xenograft models by the pediatric preclinical testing consortium.
    Kurmasheva RT; Bandyopadhyay A; Favours E; Pozo VD; Ghilu S; Phelps DA; McGeehan GM; Erickson SW; Smith MA; Houghton PJ
    Pediatr Blood Cancer; 2020 Jul; 67(7):e28284. PubMed ID: 32333633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis.
    Yokoyama A; Somervaille TC; Smith KS; Rozenblatt-Rosen O; Meyerson M; Cleary ML
    Cell; 2005 Oct; 123(2):207-18. PubMed ID: 16239140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psip1/Ledgf p75 restrains Hox gene expression by recruiting both trithorax and polycomb group proteins.
    Pradeepa MM; Grimes GR; Taylor GC; Sutherland HG; Bickmore WA
    Nucleic Acids Res; 2014 Aug; 42(14):9021-32. PubMed ID: 25056311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia.
    Klossowski S; Miao H; Kempinska K; Wu T; Purohit T; Kim E; Linhares BM; Chen D; Jih G; Perkey E; Huang H; He M; Wen B; Wang Y; Yu K; Lee SC; Danet-Desnoyers G; Trotman W; Kandarpa M; Cotton A; Abdel-Wahab O; Lei H; Dou Y; Guzman M; Peterson L; Gruber T; Choi S; Sun D; Ren P; Li LS; Liu Y; Burrows F; Maillard I; Cierpicki T; Grembecka J
    J Clin Invest; 2020 Feb; 130(2):981-997. PubMed ID: 31855575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase Msk1 physically and functionally interacts with the KMT2A/MLL1 methyltransferase complex and contributes to the regulation of multiple target genes.
    Wiersma M; Bussiere M; Halsall JA; Turan N; Slany R; Turner BM; Nightingale KP
    Epigenetics Chromatin; 2016; 9():52. PubMed ID: 27895715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPα and differentiation in MLL-AF9 leukemia.
    Thiel AT; Feng Z; Pant DK; Chodosh LA; Hua X
    Haematologica; 2013 Jun; 98(6):918-27. PubMed ID: 23349306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematopoietic transformation in the absence of MLL1/KMT2A: distinctions in target gene reactivation.
    Chen Y; Ernst P
    Cell Cycle; 2019 Jul; 18(14):1525-1531. PubMed ID: 31161857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexity of Blocking Bivalent Protein-Protein Interactions: Development of a Highly Potent Inhibitor of the Menin-Mixed-Lineage Leukemia Interaction.
    Borkin D; Klossowski S; Pollock J; Miao H; Linhares BM; Kempinska K; Jin Z; Purohit T; Wen B; He M; Sun D; Cierpicki T; Grembecka J
    J Med Chem; 2018 Jun; 61(11):4832-4850. PubMed ID: 29738674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair.
    Ye J; Zha J; Shi Y; Li Y; Yuan D; Chen Q; Lin F; Fang Z; Yu Y; Dai Y; Xu B
    Clin Epigenetics; 2019 Oct; 11(1):137. PubMed ID: 31590682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based design of high-affinity macrocyclic peptidomimetics to block the menin-mixed lineage leukemia 1 (MLL1) protein-protein interaction.
    Zhou H; Liu L; Huang J; Bernard D; Karatas H; Navarro A; Lei M; Wang S
    J Med Chem; 2013 Feb; 56(3):1113-23. PubMed ID: 23244744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c).
    Fiskus W; Boettcher S; Daver N; Mill CP; Sasaki K; Birdwell CE; Davis JA; Takahashi K; Kadia TM; DiNardo CD; Jin Q; Qi Y; Su X; McGeehan GM; Khoury JD; Ebert BL; Bhalla KN
    Blood Cancer J; 2022 Jan; 12(1):5. PubMed ID: 35017466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton pump inhibitors selectively suppress MLL rearranged leukemia cells via disrupting MLL1-WDR5 protein-protein interaction.
    Chen WL; Li DD; Chen X; Wang YZ; Xu JJ; Jiang ZY; You QD; Guo XK
    Eur J Med Chem; 2020 Feb; 188():112027. PubMed ID: 31923859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of MLL amino terminal sequences with menin is required for transformation.
    Caslini C; Yang Z; El-Osta M; Milne TA; Slany RK; Hess JL
    Cancer Res; 2007 Aug; 67(15):7275-83. PubMed ID: 17671196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition.
    Soto-Feliciano YM; Sánchez-Rivera FJ; Perner F; Barrows DW; Kastenhuber ER; Ho YJ; Carroll T; Xiong Y; Anand D; Soshnev AA; Gates L; Beytagh MC; Cheon D; Gu S; Liu XS; Krivtsov AV; Meneses M; de Stanchina E; Stone RM; Armstrong SA; Lowe SW; Allis CD
    Cancer Discov; 2023 Jan; 13(1):146-169. PubMed ID: 36264143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II.
    Wang P; Lin C; Smith ER; Guo H; Sanderson BW; Wu M; Gogol M; Alexander T; Seidel C; Wiedemann LM; Ge K; Krumlauf R; Shilatifard A
    Mol Cell Biol; 2009 Nov; 29(22):6074-85. PubMed ID: 19703992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.