These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27889205)

  • 1. Structural Analysis of Multi-component Amyloid Systems by Chemometric SAXS Data Decomposition.
    Herranz-Trillo F; Groenning M; van Maarschalkerweerd A; Tauler R; Vestergaard B; Bernadó P
    Structure; 2017 Jan; 25(1):5-15. PubMed ID: 27889205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and thermodynamics of transient protein-protein complexes by chemometric decomposition of SAXS datasets.
    Sagar A; Herranz-Trillo F; Langkilde AE; Vestergaard B; Bernadó P
    Structure; 2021 Sep; 29(9):1074-1090.e4. PubMed ID: 33862013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of prefibrillar intermediates and amyloid fibrils by small-angle X-ray scattering.
    Langkilde AE; Vestergaard B
    Methods Mol Biol; 2012; 849():137-55. PubMed ID: 22528088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of proteins and complexes using small-angle X-ray solution scattering.
    Mertens HD; Svergun DI
    J Struct Biol; 2010 Oct; 172(1):128-41. PubMed ID: 20558299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of protein oligomeric structure from small-angle X-ray scattering.
    Korasick DA; Tanner JJ
    Protein Sci; 2018 Apr; 27(4):814-824. PubMed ID: 29352739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
    Kikhney AG; Svergun DI
    FEBS Lett; 2015 Sep; 589(19 Pt A):2570-7. PubMed ID: 26320411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of quaternary structure from X-ray scattering by equilibrium mixtures of biological macromolecules.
    Petoukhov MV; Billas IM; Takacs M; Graewert MA; Moras D; Svergun DI
    Biochemistry; 2013 Oct; 52(39):6844-55. PubMed ID: 24000896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomers of Parkinson's Disease-Related α-Synuclein Mutants Have Similar Structures but Distinctive Membrane Permeabilization Properties.
    Stefanovic AN; Lindhoud S; Semerdzhiev SA; Claessens MM; Subramaniam V
    Biochemistry; 2015 May; 54(20):3142-50. PubMed ID: 25909158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha-synuclein oligomers and fibrils originate in two distinct conformer pools: a small angle X-ray scattering and ensemble optimisation modelling study.
    Curtain CC; Kirby NM; Mertens HD; Barnham KJ; Knott RB; Masters CL; Cappai R; Rekas A; Kenche VB; Ryan T
    Mol Biosyst; 2015 Jan; 11(1):190-6. PubMed ID: 25352253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small angle X-ray scattering analysis of Cu(2+)-induced oligomers of the Alzheimer's amyloid β peptide.
    Ryan TM; Kirby N; Mertens HD; Roberts B; Barnham KJ; Cappai R; Pham Cle L; Masters CL; Curtain CC
    Metallomics; 2015 Mar; 7(3):536-43. PubMed ID: 25687761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles.
    Schneidman-Duhovny D; Hammel M; Tainer JA; Sali A
    Nucleic Acids Res; 2016 Jul; 44(W1):W424-9. PubMed ID: 27151198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-resolution structures of transient protein-protein complexes using small-angle X-ray scattering.
    Blobel J; Bernadó P; Svergun DI; Tauler R; Pons M
    J Am Chem Soc; 2009 Apr; 131(12):4378-86. PubMed ID: 19275229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Structural Analysis of Intermediate Species During Fibrillation: An Application of Small-Angle X-Ray Scattering.
    Langkilde AE; Herranz-Trillo F; Bernadó P; Vestergaard B
    Methods Mol Biol; 2018; 1779():209-239. PubMed ID: 29886536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High stability and cooperative unfolding of α-synuclein oligomers.
    Paslawski W; Andreasen M; Nielsen SB; Lorenzen N; Thomsen K; Kaspersen JD; Pedersen JS; Otzen DE
    Biochemistry; 2014 Oct; 53(39):6252-63. PubMed ID: 25216651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking.
    Huang W; Ravikumar KM; Parisien M; Yang S
    J Struct Biol; 2016 Dec; 196(3):340-349. PubMed ID: 27496803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Functional Dynamics of Modular Multidomain Proteins by SAXS and NMR.
    Thompson MK; Ehlinger AC; Chazin WJ
    Methods Enzymol; 2017; 592():49-76. PubMed ID: 28668130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Structural and Thermodynamic Analysis of Prefibrillar WT α-Synuclein and Its G51D, E46K, and A53T Mutants by a Combination of Small-Angle X-ray Scattering and Variational Bayesian Weighting.
    Moretti P; Mariani P; Ortore MG; Plotegher N; Bubacco L; Beltramini M; Spinozzi F
    J Chem Inf Model; 2020 Oct; 60(10):5265-5281. PubMed ID: 32866007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering.
    Bernadó P; Svergun DI
    Mol Biosyst; 2012 Jan; 8(1):151-67. PubMed ID: 21947276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pyDockSAXS: protein-protein complex structure by SAXS and computational docking.
    Jiménez-García B; Pons C; Svergun DI; Bernadó P; Fernández-Recio J
    Nucleic Acids Res; 2015 Jul; 43(W1):W356-61. PubMed ID: 25897115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of SAXS for the Structural Characterization of IDPs.
    Kachala M; Valentini E; Svergun DI
    Adv Exp Med Biol; 2015; 870():261-89. PubMed ID: 26387105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.