BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1160 related articles for article (PubMed ID: 27889665)

  • 1. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heralding a new paradigm in 3D tumor modeling.
    Fong EL; Harrington DA; Farach-Carson MC; Yu H
    Biomaterials; 2016 Nov; 108():197-213. PubMed ID: 27639438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications.
    Seeto WJ; Tian Y; Pradhan S; Minond D; Lipke EA
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3831-3841. PubMed ID: 35969206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEG-fibrinogen hydrogels for three-dimensional breast cancer cell culture.
    Pradhan S; Hassani I; Seeto WJ; Lipke EA
    J Biomed Mater Res A; 2017 Jan; 105(1):236-252. PubMed ID: 27615742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Templated Macroporous Polyethylene Glycol Hydrogels for Spheroid and Aggregate Cell Culture.
    Imaninezhad M; Hill L; Kolar G; Vogt K; Zustiak SP
    Bioconjug Chem; 2019 Jan; 30(1):34-46. PubMed ID: 30562006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of an in vitro 3D PDAC stroma rich spheroid model.
    Ware MJ; Keshishian V; Law JJ; Ho JC; Favela CA; Rees P; Smith B; Mohammad S; Hwang RF; Rajapakshe K; Coarfa C; Huang S; Edwards DP; Corr SJ; Godin B; Curley SA
    Biomaterials; 2016 Nov; 108():129-42. PubMed ID: 27627810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-phase, surface tension-based fabrication method for generation of tumor millibeads.
    Pradhan S; Chaudhury CS; Lipke EA
    Langmuir; 2014 Apr; 30(13):3817-25. PubMed ID: 24617794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.
    Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C
    Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells.
    Loessner D; Stok KS; Lutolf MP; Hutmacher DW; Clements JA; Rizzi SC
    Biomaterials; 2010 Nov; 31(32):8494-506. PubMed ID: 20709389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids.
    Ferreira LP; Gaspar VM; Mano JF
    Biomaterials; 2018 Dec; 185():155-173. PubMed ID: 30245385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Model of Tumor Microenvironment on Microfluidic Platform.
    Chung M; Ahn J; Son K; Kim S; Jeon NL
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28544639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response.
    Monteiro MV; Gaspar VM; Ferreira LP; Mano JF
    Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering.
    Sheikholeslam M; Wheeler SD; Duke KG; Marsden M; Pritzker M; Chen P
    Acta Biomater; 2018 Mar; 69():107-119. PubMed ID: 29248638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrinogen-Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures.
    Yosef A; Kossover O; Mironi-Harpaz I; Mauretti A; Melino S; Mizrahi J; Seliktar D
    Adv Healthc Mater; 2019 Jul; 8(13):e1801436. PubMed ID: 31081289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids.
    Baker AEG; Tam RY; Shoichet MS
    Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion.
    Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD
    Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.
    Brancato V; Garziano A; Gioiella F; Urciuolo F; Imparato G; Panzetta V; Fusco S; Netti PA
    Acta Biomater; 2017 Jan; 47():1-13. PubMed ID: 27721010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.