These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27890815)

  • 1. Passive drug permeation through membranes and cellular distribution.
    Scott DO; Ghosh A; Di L; Maurer TS
    Pharmacol Res; 2017 Mar; 117():94-102. PubMed ID: 27890815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a unified model of passive drug permeation II: the physiochemical determinants of unbound tissue distribution with applications to the design of hepatoselective glucokinase activators.
    Ghosh A; Maurer TS; Litchfield J; Varma MV; Rotter C; Scialis R; Feng B; Tu M; Guimaraes CR; Scott DO
    Drug Metab Dispos; 2014 Oct; 42(10):1599-610. PubMed ID: 25024402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a unified model of passive drug permeation I: origins of the unstirred water layer with applications to ionic permeation.
    Ghosh A; Scott DO; Maurer TS
    Eur J Pharm Sci; 2014 Feb; 52():109-24. PubMed ID: 24211511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition.
    Smith D; Artursson P; Avdeef A; Di L; Ecker GF; Faller B; Houston JB; Kansy M; Kerns EH; Krämer SD; Lennernäs H; van de Waterbeemd H; Sugano K; Testa B
    Mol Pharm; 2014 Jun; 11(6):1727-38. PubMed ID: 24724562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid-bilayer permeation of drug-like compounds.
    Krämer SD; Lombardi D; Primorac A; Thomae AV; Wunderli-Allenspach H
    Chem Biodivers; 2009 Nov; 6(11):1900-16. PubMed ID: 19937828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the artificial membrane permeability of drugs by digital simulation.
    Nakamura M; Osakai T
    Eur J Pharm Sci; 2016 Aug; 91():154-61. PubMed ID: 27334569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid measurement of intracellular unbound drug concentrations.
    Mateus A; Matsson P; Artursson P
    Mol Pharm; 2013 Jun; 10(6):2467-78. PubMed ID: 23631740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of passive intestinal membrane permeability using Monte Carlo method to generate drug-like molecule population.
    Sugano K
    Int J Pharm; 2009 May; 373(1-2):55-61. PubMed ID: 19429288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modeling for local trans-round window membrane drug transport in the inner ear.
    Zhang Y; Su H; Wen L; Yang F; Chen G
    Drug Deliv; 2016 Oct; 23(8):3082-3087. PubMed ID: 26934165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug permeation through human skin II: Permeability of ionizable compounds.
    Swarbrick J; Lee G; Brom J; Gensmantel NP
    J Pharm Sci; 1984 Oct; 73(10):1352-5. PubMed ID: 6502479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery.
    Kerns EH; Di L; Petusky S; Farris M; Ley R; Jupp P
    J Pharm Sci; 2004 Jun; 93(6):1440-53. PubMed ID: 15124203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption of poorly water soluble drugs subject to apical efflux using phospholipids as solubilizers in the Caco-2 cell model.
    Kapitza SB; Michel BR; van Hoogevest P; Leigh ML; Imanidis G
    Eur J Pharm Biopharm; 2007 Apr; 66(1):146-58. PubMed ID: 17071065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Drug permeation through artificial lipid membranes. 17. The mechanism of ion pair transport].
    Neubert R; Fürst W; Böhm W; Dabow S
    Pharmazie; 1984 Jun; 39(6):401-3. PubMed ID: 6091156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods.
    Fridén M; Bergström F; Wan H; Rehngren M; Ahlin G; Hammarlund-Udenaes M; Bredberg U
    Drug Metab Dispos; 2011 Mar; 39(3):353-62. PubMed ID: 21149540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breaching the skin barrier--insights from molecular simulation of model membranes.
    Notman R; Anwar J
    Adv Drug Deliv Rev; 2013 Feb; 65(2):237-50. PubMed ID: 22414344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipulse drug permeation across a membrane driven by a chemical pH-oscillator.
    Misra GP; Siegel RA
    J Control Release; 2002 Feb; 79(1-3):293-7. PubMed ID: 11853939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Lipophilicity and Drug Ionization on Permeation Across Porcine Sublingual Mucosa.
    Goswami T; Li X; Jasti BR
    AAPS PharmSciTech; 2017 Jan; 18(1):175-181. PubMed ID: 26931443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the paracellular route to the pH-dependent epithelial permeability to cationic drugs.
    Nagahara N; Tavelin S; Artursson P
    J Pharm Sci; 2004 Dec; 93(12):2972-84. PubMed ID: 15459946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of oral drug absorption in humans by theoretical passive absorption model.
    Obata K; Sugano K; Saitoh R; Higashida A; Nabuchi Y; Machida M; Aso Y
    Int J Pharm; 2005 Apr; 293(1-2):183-92. PubMed ID: 15778056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier.
    Gratieri T; Kalia YN
    Adv Drug Deliv Rev; 2013 Feb; 65(2):315-29. PubMed ID: 22626977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.