BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27891117)

  • 1. Disruption of the Gene Encoding Endo-β-1, 4-Xylanase Affects the Growth and Virulence of
    Yu Y; Xiao J; Du J; Yang Y; Bi C; Qing L
    Front Microbiol; 2016; 7():1787. PubMed ID: 27891117
    [No Abstract]   [Full Text] [Related]  

  • 2. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen.
    Bolton MD; Thomma BP; Nelson BD
    Mol Plant Pathol; 2006 Jan; 7(1):1-16. PubMed ID: 20507424
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Hossain MM; Sultana F; Li W; Tran LP; Mostofa MG
    Cells; 2023 Mar; 12(7):. PubMed ID: 37048136
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor.
    Wu BM; Subbarao KV
    Phytopathology; 2008 Oct; 98(10):1144-52. PubMed ID: 18943461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum.
    Hu Y; Gong H; Lu Z; Zhang P; Zheng S; Wang J; Tian B; Fang A; Yang Y; Bi C; Cheng J; Yu Y
    Microbiol Spectr; 2023 Jun; 11(3):e0098623. PubMed ID: 37140432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic diversity studies based on morpho-pathological and molecular variability of the Sclerotinia sclerotiorum population infecting potato (Solanum tuberosum L.).
    Chaudhary S; Lal M; Sagar S; Tyagi H; Kumar M; Sharma S; Chakrabarti SK
    World J Microbiol Biotechnol; 2020 Oct; 36(12):177. PubMed ID: 33118084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant hypersensitive induced reaction protein facilitates cell death induced by secreted xylanase associated with the pathogenicity of Sclerotinia sclerotiorum.
    Wang P; Wang Y; Hu Y; Chen Z; Han L; Zhu W; Tian B; Fang A; Yang Y; Bi C; Yu Y
    Plant J; 2024 Apr; 118(1):90-105. PubMed ID: 38113332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germination of Sclerotinia minor and S. sclerotiorum Sclerotia Under Various Soil Moisture and Temperature Combinations.
    Hao JJ; Subbarao KV; Duniway JM
    Phytopathology; 2003 Apr; 93(4):443-50. PubMed ID: 18944359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in Pathogenicity and Subsequent Production of Sclerotia of
    Zamani-Noor N; Brand S; Noshin F; Söchting HP
    Plant Dis; 2024 Jun; 108(6):1688-1694. PubMed ID: 38170446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SsAGM1-Mediated Uridine Diphosphate-
    Zhang J; Xiao K; Li M; Hu H; Zhang X; Liu J; Pan H; Zhang Y
    Front Microbiol; 2022; 13():938784. PubMed ID: 35814696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The D-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum.
    Wei W; Pierre-Pierre N; Peng H; Ellur V; Vandemark GJ; Chen W
    Fungal Genet Biol; 2020 Dec; 145():103482. PubMed ID: 33137429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The
    Jiao W; Yu H; Chen X; Xiao K; Jia D; Wang F; Zhang Y; Pan H
    J Fungi (Basel); 2022 Dec; 8(12):. PubMed ID: 36547647
    [No Abstract]   [Full Text] [Related]  

  • 13. Carpogenic Germinability of Diverse
    Michael PJ; Lui KY; Thomson LL; Stefanova K; Bennett SJ
    Plant Dis; 2020 Nov; 104(11):2891-2897. PubMed ID: 32924875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum.
    Fan H; Yu G; Liu Y; Zhang X; Liu J; Zhang Y; Rollins JA; Sun F; Pan H
    Mol Plant Pathol; 2017 Sep; 18(7):963-975. PubMed ID: 27353472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple Species of Asteraceae Plants Are Susceptible to Root Infection by the Necrotrophic Fungal Pathogen
    Underwood W; Gilley M; Misar CG; Gulya TJ; Seiler GJ; Markell SG
    Plant Dis; 2022 May; 106(5):1366-1373. PubMed ID: 34874175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scarification and Environmental Factors that Enhance Carpogenic Germination of Sclerotia of Sclerotinia sclerotiorum.
    Garg H; Sivasithamparam K; Barbetti MJ
    Plant Dis; 2010 Aug; 94(8):1041-1047. PubMed ID: 30743489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination.
    Cheng Q; Hu C; Jia W; Cai M; Zhao Y; Tang Y; Yang D; Zhou Y; Sun X; Zhao X
    Ecotoxicol Environ Saf; 2019 Nov; 183():109503. PubMed ID: 31394376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forecasting Sclerotinia Disease on Lettuce: A Predictive Model for Carpogenic Germination of Sclerotinia sclerotiorum Sclerotia.
    Clarkson JP; Phelps K; Whipps JM; Young CS; Smith JA; Watling M
    Phytopathology; 2007 May; 97(5):621-31. PubMed ID: 18943582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting sclerotinia disease on lettuce: toward developing a prediction model for carpogenic germination of sclerotia.
    Clarkson JP; Phelps K; Whipps JM; Young CS; Smith JA; Watling M
    Phytopathology; 2004 Mar; 94(3):268-79. PubMed ID: 18943975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Narrow windrow burning canola (Brassica napus L.) residue for Sclerotinia sclerotiorum (Lib.) de Bary sclerotia destruction.
    Brooks KD; Bennett SJ; Hodgson LM; Ashworth MB
    Pest Manag Sci; 2018 Nov; 74(11):2594-2600. PubMed ID: 29687565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.