BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 27891578)

  • 1. Dual specificity phosphatase 15 regulates Erk activation in Schwann cells.
    Rodríguez-Molina JF; Lopez-Anido C; Ma KH; Zhang C; Olson T; Muth KN; Weider M; Svaren J
    J Neurochem; 2017 Feb; 140(3):368-382. PubMed ID: 27891578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Dual-specificity phosphatase Dusp15 is regulated by Sox10 and Myrf in Myelinating Oligodendrocytes.
    Muth KN; Piefke S; Weider M; Sock E; Hermans-Borgmeyer I; Wegner M; Küspert M
    Glia; 2016 Dec; 64(12):2120-2132. PubMed ID: 27532821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination.
    Ogata T; Iijima S; Hoshikawa S; Miura T; Yamamoto S; Oda H; Nakamura K; Tanaka S
    J Neurosci; 2004 Jul; 24(30):6724-32. PubMed ID: 15282275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of myelin-specific gene expression. Relevance to CMT1.
    Kamholz J; Awatramani R; Menichella D; Jiang H; Xu W; Shy M
    Ann N Y Acad Sci; 1999 Sep; 883():91-108. PubMed ID: 10586235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of eIF2α Promotes Schwann Cell Differentiation and Myelination in CMT1B Mice with Activated UPR.
    Scapin C; Ferri C; Pettinato E; Bianchi F; Del Carro U; Feltri ML; Kaufman RJ; Wrabetz L; D'Antonio M
    J Neurosci; 2020 Oct; 40(42):8174-8187. PubMed ID: 32973043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Sox10 genomic occupancy in myelinating glia.
    Lopez-Anido C; Sun G; Koenning M; Srinivasan R; Hung HA; Emery B; Keles S; Svaren J
    Glia; 2015 Nov; 63(11):1897-1914. PubMed ID: 25974668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of the node of Ranvier by Schwann cells is under control of transcription factor Sox10.
    Saur AL; Fröb F; Weider M; Wegner M
    Glia; 2021 Jun; 69(6):1464-1477. PubMed ID: 33566433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes.
    Hornig J; Fröb F; Vogl MR; Hermans-Borgmeyer I; Tamm ER; Wegner M
    PLoS Genet; 2013 Oct; 9(10):e1003907. PubMed ID: 24204311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength of ERK1/2 MAPK Activation Determines Its Effect on Myelin and Axonal Integrity in the Adult CNS.
    Ishii A; Furusho M; Dupree JL; Bansal R
    J Neurosci; 2016 Jun; 36(24):6471-87. PubMed ID: 27307235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWI/SNF enzymes promote SOX10- mediated activation of myelin gene expression.
    Marathe HG; Mehta G; Zhang X; Datar I; Mehrotra A; Yeung KC; de la Serna IL
    PLoS One; 2013; 8(7):e69037. PubMed ID: 23874858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sox10 cooperates with the mediator subunit 12 during terminal differentiation of myelinating glia.
    Vogl MR; Reiprich S; Küspert M; Kosian T; Schrewe H; Nave KA; Wegner M
    J Neurosci; 2013 Apr; 33(15):6679-90. PubMed ID: 23575864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve.
    Srinivasan R; Sun G; Keles S; Jones EA; Jang SW; Krueger C; Moran JJ; Svaren J
    Nucleic Acids Res; 2012 Aug; 40(14):6449-60. PubMed ID: 22492709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to comprehensive genome and proteome expression analyses in Schwann cells and neurons during peripheral nerve myelin formation.
    Kangas SM; Ohlmeier S; Sormunen R; Jouhilahti EM; Peltonen S; Peltonen J; Heape AM
    J Neurochem; 2016 Sep; 138(6):830-44. PubMed ID: 27364987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained activation of ERK1/2 MAPK in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion.
    Ishii A; Furusho M; Bansal R
    J Neurosci; 2013 Jan; 33(1):175-86. PubMed ID: 23283332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin C regulates Schwann cell myelination by promoting DNA demethylation of pro-myelinating genes.
    Huff TC; Sant DW; Camarena V; Van Booven D; Andrade NS; Mustafi S; Monje PV; Wang G
    J Neurochem; 2021 Jun; 157(6):1759-1773. PubMed ID: 32219848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Krox20 gene expression by Sox10 in myelinating Schwann cells.
    Reiprich S; Kriesch J; Schreiner S; Wegner M
    J Neurochem; 2010 Feb; 112(3):744-54. PubMed ID: 19922439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Myelin-Specific Gene Expression: Relevance to CMT1.
    Kamholz J; Awatramani R; Menichella D; Jiang H; Xu W; Shy M
    Ann N Y Acad Sci; 1999 Oct; 883(1):91-108. PubMed ID: 29086995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tead1 regulates the expression of Peripheral Myelin Protein 22 during Schwann cell development.
    Lopez-Anido C; Poitelon Y; Gopinath C; Moran JJ; Ma KH; Law WD; Antonellis A; Feltri ML; Svaren J
    Hum Mol Genet; 2016 Jul; 25(14):3055-3069. PubMed ID: 27288457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin.
    Glenn TD; Talbot WS
    Development; 2013 Aug; 140(15):3167-75. PubMed ID: 23804499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mek/ERK1/2-MAPK and PI3K/Akt/mTOR signaling plays both independent and cooperative roles in Schwann cell differentiation, myelination and dysmyelination.
    Ishii A; Furusho M; Bansal R
    Glia; 2021 Oct; 69(10):2429-2446. PubMed ID: 34157170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.