These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27891770)

  • 1. Phenomenological vs. biophysical models of thermal stress in aquatic eggs.
    Martin BT; Pike A; John SN; Hamda N; Roberts J; Lindley ST; Danner EM
    Ecol Lett; 2017 Jan; 20(1):50-59. PubMed ID: 27891770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biophysical basis of thermal tolerance in fish eggs.
    Martin BT; Dudley PN; Kashef NS; Stafford DM; Reeder WJ; Tonina D; Del Rio AM; Scott Foott J; Danner EM
    Proc Biol Sci; 2020 Oct; 287(1937):20201550. PubMed ID: 33081621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematocrit Is Associated with Thermal Tolerance and Modulated by Developmental Temperature in Juvenile Chinook Salmon.
    Muñoz NJ; Farrell AP; Heath JW; Neff BD
    Physiol Biochem Zool; 2018; 91(1):757-762. PubMed ID: 29220205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological risk assessment for Pacific salmon exposed to dimethoate in California.
    Whitfield Aslund M; Breton RL; Padilla L; Winchell M; Wooding KL; Moore DR; Teed RS; Reiss R; Whatling P
    Environ Toxicol Chem; 2017 Feb; 36(2):532-543. PubMed ID: 27454845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of water diversion and climate change for juvenile chinook salmon in the lemhi river basin (USA.).
    Walters AW; Bartz KK; McClure MM
    Conserv Biol; 2013 Dec; 27(6):1179-89. PubMed ID: 24299084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect genetic effects underlie oxygen-limited thermal tolerance within a coastal population of chinook salmon.
    Muñoz NJ; Anttila K; Chen Z; Heath JW; Farrell AP; Neff BD
    Proc Biol Sci; 2014 Aug; 281(1789):20141082. PubMed ID: 25009055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of salmonid freshwater life history in western US streams to future climate conditions.
    Beer WN; Anderson JJ
    Glob Chang Biol; 2013 Aug; 19(8):2547-56. PubMed ID: 23640715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate impacts at multiple scales: evidence for differential population responses in juvenile Chinook salmon.
    Crozier L; Zabel RW
    J Anim Ecol; 2006 Sep; 75(5):1100-9. PubMed ID: 16922845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pacific salmon in hot water: applying aerobic scope models and biotelemetry to predict the success of spawning migrations.
    Farrell AP; Hinch SG; Cooke SJ; Patterson DA; Crossin GT; Lapointe M; Mathes MT
    Physiol Biochem Zool; 2008; 81(6):697-708. PubMed ID: 18922081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking climate change projections for an Alaskan watershed to future coho salmon production.
    Leppi JC; Rinella DJ; Wilson RR; Loya WM
    Glob Chang Biol; 2014 Jun; 20(6):1808-20. PubMed ID: 24323577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects of climate change and bank stabilization on shallow water habitats of chinook salmon.
    Jorgensen JC; McClure MM; Sheer MB; Munn NL
    Conserv Biol; 2013 Dec; 27(6):1201-11. PubMed ID: 24299086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Color photographic index of fall Chinook salmon embryonic development and accumulated thermal units.
    Boyd JW; Oldenburg EW; McMichael GA
    PLoS One; 2010 Jul; 5(7):e11877. PubMed ID: 20686709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal exposure of adult Chinook salmon in the Willamette River basin.
    Keefer ML; Clabough TS; Jepson MA; Naughton GP; Blubaugh TJ; Joosten DC; Caudill CC
    J Therm Biol; 2015 Feb; 48():11-20. PubMed ID: 25660625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model on the evolution of viviparity.
    Rodríguez-Díaz T; Braña F
    J Evol Biol; 2012 Sep; 25(9):1877-87. PubMed ID: 22862292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change.
    Elliott JM; Elliott JA
    J Fish Biol; 2010 Nov; 77(8):1793-817. PubMed ID: 21078091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
    Verberk WC; Overgaard J; Ern R; Bayley M; Wang T; Boardman L; Terblanche JS
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Feb; 192():64-78. PubMed ID: 26506130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise training does not affect heat tolerance in Chinook salmon (Oncorhynchus tshawytscha).
    Gomez Isaza DF; Rodgers EM
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Aug; 270():111229. PubMed ID: 35500866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Provenance matters: thermal reaction norms for embryo survival among sockeye salmon Oncorhynchus nerka populations.
    Whitney CK; Hinch SG; Patterson DA
    J Fish Biol; 2013 Apr; 82(4):1159-76. PubMed ID: 23557297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal heterogeneity mediates the effects of pulsed subsidies across a landscape.
    Armstrong JB; Schindler DE; Omori KL; Ruff CP; Quinn TP
    Ecology; 2010 May; 91(5):1445-54. PubMed ID: 20503876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial variation buffers temporal fluctuations in early juvenile survival for an endangered Pacific salmon.
    Thorson JT; Scheuerell MD; Buhle ER; Copeland T
    J Anim Ecol; 2014 Jan; 83(1):157-67. PubMed ID: 23919254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.