These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27892475)

  • 1. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields.
    Varma VB; Ray A; Wang ZM; Wang ZP; Ramanujan RV
    Sci Rep; 2016 Nov; 6():37671. PubMed ID: 27892475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric manipulation on deformation of ionic ferrofluid sessile droplets.
    Zhu GP; Li XA; Wang QY; Fang MH; Ding YC
    Electrophoresis; 2024 Jul; 45(13-14):1243-1251. PubMed ID: 38308502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing.
    Babahosseini H; Misteli T; DeVoe DL
    Lab Chip; 2019 Jan; 19(3):493-502. PubMed ID: 30623951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip droplet analysis and cell spheroid screening by capillary wrapping enabled shape-adaptive ferrofluid transporters.
    Wang X; Li X; Pu A; Shun HB; Chen C; Ai L; Tan Z; Zhang J; Liu K; Gao J; Ban K; Yao X
    Lab Chip; 2024 Mar; 24(6):1782-1793. PubMed ID: 38358122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplets formation and merging in two-phase flow microfluidics.
    Gu H; Duits MH; Mugele F
    Int J Mol Sci; 2011; 12(4):2572-97. PubMed ID: 21731459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic regulation on evaporation behavior of ferrofluid sessile droplets.
    Wang QY; Zhu GP
    Electrophoresis; 2023 Dec; 44(23):1879-1888. PubMed ID: 37409390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric study.
    Amiri Roodan V; Gómez-Pastora J; Karampelas IH; González-Fernández C; Bringas E; Ortiz I; Chalmers JJ; Furlani EP; Swihart MT
    Soft Matter; 2020 Oct; 16(41):9506-9518. PubMed ID: 32966533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Microfluidics Droplet-Based Interdigitated Ring-Shaped Electrode Sensor for Lab-on-a-Chip Applications.
    Moraes da Silva Junior S; Bento Ribeiro LE; Fruett F; Stiens J; Swart JW; Moshkalev S
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically Controllable Microparticle Synthesis and Digital Microfluidic Manipulation by Electric-Field-Induced Droplet Dispensing into Immiscible Fluids.
    Um T; Hong J; Im do J; Lee SJ; Kang IS
    Sci Rep; 2016 Aug; 6():31901. PubMed ID: 27534580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic water-in-water droplet microfluidics: Systematic experiments and scaling mathematical analysis.
    Navi M; Abbasi N; Salari A; Tsai SSH
    Biomicrofluidics; 2020 Mar; 14(2):024101. PubMed ID: 32161632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable Control of Nanoliter Droplet Arrays using Membrane Displacement Traps.
    Harriot J; Yeh M; Pabba M; DeVoe DL
    Adv Mater Technol; 2023 Nov; 8(21):. PubMed ID: 38495529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual and collective manipulation of multifunctional bimodal droplets in three dimensions.
    Sun M; Sun B; Park M; Yang S; Wu Y; Zhang M; Kang W; Yoon J; Zhang L; Sitti M
    Sci Adv; 2024 Jul; 10(29):eadp1439. PubMed ID: 39018413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic platform for on-demand formation and merging of microdroplets using electric control.
    Gu H; Murade CU; Duits MH; Mugele F
    Biomicrofluidics; 2011 Mar; 5(1):11101. PubMed ID: 21522489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image-based real-time feedback control of magnetic digital microfluidics by artificial intelligence-empowered rapid object detector for automated in vitro diagnostics.
    Tang Y; Duan F; Zhou A; Kanitthamniyom P; Luo S; Hu X; Jiang X; Vasoo S; Zhang X; Zhang Y
    Bioeng Transl Med; 2023 Jul; 8(4):e10428. PubMed ID: 37476053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Janus origami robot for cross-scale droplet omni-manipulation.
    Jiang S; Li B; Zhao J; Wu D; Zhang Y; Zhao Z; Zhang Y; Yu H; Shao K; Zhang C; Li R; Chen C; Shen Z; Hu J; Dong B; Zhu L; Li J; Wang L; Chu J; Hu Y
    Nat Commun; 2023 Sep; 14(1):5455. PubMed ID: 37673871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet microfluidics: fundamentals and its advanced applications.
    Sohrabi S; Kassir N; Keshavarz Moraveji M
    RSC Adv; 2020 Jul; 10(46):27560-27574. PubMed ID: 35516933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A programmable ferrofluidic droplet robot.
    Zhao P; Yan L; Gao X
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):87. PubMed ID: 37752272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Distance Continuous Self-Transport of a Droplet by Merging Droplets on a Graphene-Covered Multibranch Gradient Groove Surface.
    Gao H; Zhang F; Liu Z; Song Y; Zhang Z; Ding J
    Langmuir; 2023 Dec; 39(48):17427-17435. PubMed ID: 37975860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coalescence and mixing dynamics of droplets in acoustic levitation by selective colour imaging and measurement.
    Honda K; Fujiwara K; Hasegawa K; Kaneko A; Abe Y
    Sci Rep; 2023 Nov; 13(1):19590. PubMed ID: 37949912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart materials for light control of droplets.
    Liu M; Hua J; Du X
    Nanoscale; 2024 May; 16(18):8820-8827. PubMed ID: 38624048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.