These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 27892475)
1. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields. Varma VB; Ray A; Wang ZM; Wang ZP; Ramanujan RV Sci Rep; 2016 Nov; 6():37671. PubMed ID: 27892475 [TBL] [Abstract][Full Text] [Related]
2. The Effect of Non-Uniform Magnetic Field on the Efficiency of Mixing in Droplet-Based Microfluidics: A Numerical Investigation. Rezaeian M; Nouri M; Hassani-Gangaraj M; Shamloo A; Nasiri R Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296014 [TBL] [Abstract][Full Text] [Related]
3. Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Varma VB; Wu RG; Wang ZP; Ramanujan RV Lab Chip; 2017 Oct; 17(20):3514-3525. PubMed ID: 28936512 [TBL] [Abstract][Full Text] [Related]
4. A three-dimensional electrode for highly efficient electrocoalescence-based droplet merging. Guzman AR; Kim HS; de Figueiredo P; Han A Biomed Microdevices; 2015 Apr; 17(2):35. PubMed ID: 25681970 [TBL] [Abstract][Full Text] [Related]
5. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement. Shen F; Li Y; Liu Z; Li X Microfluid Nanofluidics; 2017 Apr; 21(4):. PubMed ID: 28890680 [TBL] [Abstract][Full Text] [Related]
6. Electric manipulation on deformation of ionic ferrofluid sessile droplets. Zhu GP; Li XA; Wang QY; Fang MH; Ding YC Electrophoresis; 2024 Jul; 45(13-14):1243-1251. PubMed ID: 38308502 [TBL] [Abstract][Full Text] [Related]
7. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Zagnoni M; Cooper JM Lab Chip; 2009 Sep; 9(18):2652-8. PubMed ID: 19704980 [TBL] [Abstract][Full Text] [Related]
8. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting. Ahmadi F; Samlali K; Vo PQN; Shih SCC Lab Chip; 2019 Jan; 19(3):524-535. PubMed ID: 30633267 [TBL] [Abstract][Full Text] [Related]
9. Towards an active droplet-based microfluidic platform for programmable fluid handling. Cao X; Buryska T; Yang T; Wang J; Fischer P; Streets A; Stavrakis S; deMello A Lab Chip; 2023 Apr; 23(8):2029-2038. PubMed ID: 37000567 [TBL] [Abstract][Full Text] [Related]
10. Reconfigurable multifunctional ferrofluid droplet robots. Fan X; Dong X; Karacakol AC; Xie H; Sitti M Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27916-27926. PubMed ID: 33106419 [TBL] [Abstract][Full Text] [Related]
11. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. Jin SH; Jeong HH; Lee B; Lee SS; Lee CS Lab Chip; 2015; 15(18):3677-86. PubMed ID: 26247820 [TBL] [Abstract][Full Text] [Related]
16. A droplet-to-digital (D2D) microfluidic device for single cell assays. Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549 [TBL] [Abstract][Full Text] [Related]
17. Variations of the Static Contact Angle of Ferrofluid Droplets on Solid Horizontal Surfaces in External Uniform Magnetic Fields. Edalatpour M; Sommers AD; Eid KF Langmuir; 2020 Jun; 36(22):6314-6322. PubMed ID: 31257887 [TBL] [Abstract][Full Text] [Related]
18. Droplets merging through wireless ultrasonic actuation. Nayak PP; Kar DP; Bhuyan S Ultrasonics; 2016 Jan; 64():83-8. PubMed ID: 26299402 [TBL] [Abstract][Full Text] [Related]
19. Migration of ferrofluid droplets in shear flow under a uniform magnetic field. Zhang J; Hassan MR; Rallabandi B; Wang C Soft Matter; 2019 Mar; 15(11):2439-2446. PubMed ID: 30801084 [TBL] [Abstract][Full Text] [Related]