These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 27892500)

  • 41. Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation.
    Lee JH; Pestova TV; Shin BS; Cao C; Choi SK; Dever TE
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16689-94. PubMed ID: 12471154
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Translation initiation mediated by RNA looping.
    Paek KY; Hong KY; Ryu I; Park SM; Keum SJ; Kwon OS; Jang SK
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):1041-6. PubMed ID: 25583496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D.
    Sanz MA; González Almela E; Carrasco L
    Sci Rep; 2017 Feb; 7():43876. PubMed ID: 28240315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Initiation factor eIF2-independent mode of c-Src mRNA translation occurs via an internal ribosome entry site.
    Allam H; Ali N
    J Biol Chem; 2010 Feb; 285(8):5713-25. PubMed ID: 20028973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation.
    Michel YM; Borman AM; Paulous S; Kean KM
    Mol Cell Biol; 2001 Jul; 21(13):4097-109. PubMed ID: 11390639
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel uORF-based regulatory mechanism controls translation of the human MDM2 and eIF2D mRNAs during stress.
    Akulich KA; Sinitcyn PG; Makeeva DS; Andreev DE; Terenin IM; Anisimova AS; Shatsky IN; Dmitriev SE
    Biochimie; 2019 Feb; 157():92-101. PubMed ID: 30419262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2.
    Lee JH; Choi SK; Roll-Mecak A; Burley SK; Dever TE
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4342-7. PubMed ID: 10200264
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two different mechanisms for ribosome/mRNA interaction in archaeal translation initiation.
    Benelli D; Maone E; Londei P
    Mol Microbiol; 2003 Oct; 50(2):635-43. PubMed ID: 14617185
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection.
    Pestova TV; Kolupaeva VG
    Genes Dev; 2002 Nov; 16(22):2906-22. PubMed ID: 12435632
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural insights on the translation initiation complex: ghosts of a universal initiation complex.
    Allen GS; Frank J
    Mol Microbiol; 2007 Feb; 63(4):941-50. PubMed ID: 17238926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The intrinsically disordered region of eIF5B stimulates IRES usage and nucleates biological granule formation.
    Harris MT; Marr MT
    Cell Rep; 2023 Oct; 42(10):113283. PubMed ID: 37862172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of ribosomal subunit joining during eukaryotic translation initiation.
    Acker MG; Lorsch JR
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):653-7. PubMed ID: 18631135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. eIF5B gates the transition from translation initiation to elongation.
    Wang J; Johnson AG; Lapointe CP; Choi J; Prabhakar A; Chen DH; Petrov AN; Puglisi JD
    Nature; 2019 Sep; 573(7775):605-608. PubMed ID: 31534220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural Insights into the Mechanism of Scanning and Start Codon Recognition in Eukaryotic Translation Initiation.
    Hinnebusch AG
    Trends Biochem Sci; 2017 Aug; 42(8):589-611. PubMed ID: 28442192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preferential selection of the 5'-terminal start codon on leaderless mRNAs by mammalian mitochondrial ribosomes.
    Christian BE; Spremulli LL
    J Biol Chem; 2010 Sep; 285(36):28379-86. PubMed ID: 20610392
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes.
    Geissler R; Golbik RP; Behrens SE
    Nucleic Acids Res; 2012 Jun; 40(11):4998-5011. PubMed ID: 22323517
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element.
    Thompson SR; Gulyas KD; Sarnow P
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12972-7. PubMed ID: 11687653
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Eukaryotic initiation factor 5B (eIF5B) provides a critical cell survival switch to glioblastoma cells via regulation of apoptosis.
    Ross JA; Dungen KV; Bressler KR; Fredriksen M; Khandige Sharma D; Balasingam N; Thakor N
    Cell Death Dis; 2019 Jan; 10(2):57. PubMed ID: 30670698
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages.
    Lee S; Truesdell SS; Bukhari SI; Lee JH; LeTonqueze O; Vasudevan S
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):E4315-22. PubMed ID: 25261552
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Translation initiation in Archaea: conserved and domain-specific features.
    Benelli D; Londei P
    Biochem Soc Trans; 2011 Jan; 39(1):89-93. PubMed ID: 21265752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.