These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27892693)

  • 1. A Graph Approach to Mining Biological Patterns in the Binding Interfaces.
    Cheng W; Yan C
    J Comput Biol; 2017 Jan; 24(1):31-39. PubMed ID: 27892693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.
    Khashan R; Zheng W; Tropsha A
    Proteins; 2012 Aug; 80(9):2207-17. PubMed ID: 22581643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and energy determinants in protein-RNA docking.
    Pérez-Cano L; Romero-Durana M; Fernández-Recio J
    Methods; 2017 Apr; 118-119():163-170. PubMed ID: 27816523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combinatorial scoring function for protein-RNA docking.
    Zhang Z; Lu L; Zhang Y; Hua Li C; Wang CX; Zhang XY; Tan JJ
    Proteins; 2017 Apr; 85(4):741-752. PubMed ID: 28120375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A boosting approach for prediction of protein-RNA binding residues.
    Tang Y; Liu D; Wang Z; Wen T; Deng L
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):465. PubMed ID: 29219069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining the characteristic interaction patterns on protein-protein binding interfaces.
    Li Y; Liu Z; Han L; Li C; Wang R
    J Chem Inf Model; 2013 Sep; 53(9):2437-47. PubMed ID: 23930922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Mining Meets Machine Learning: A Novel ANN-based Multi-body Interaction Docking Scoring Function (MBI-score) Based on Utilizing Frequent Geometric and Chemical Patterns of Interfacial Atoms in Native Protein-ligand Complexes.
    Khashan R; Tropsha A; Zheng W
    Mol Inform; 2022 Aug; 41(8):e2100248. PubMed ID: 35142086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting structural and topological information to improve prediction of RNA-protein binding sites.
    Maetschke SR; Yuan Z
    BMC Bioinformatics; 2009 Oct; 10():341. PubMed ID: 19835626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new hydrogen-bonding potential for the design of protein-RNA interactions predicts specific contacts and discriminates decoys.
    Chen Y; Kortemme T; Robertson T; Baker D; Varani G
    Nucleic Acids Res; 2004; 32(17):5147-62. PubMed ID: 15459285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure based approach for understanding organism specific recognition of protein-RNA complexes.
    Nagarajan R; Chothani SP; Ramakrishnan C; Sekijima M; Gromiha MM
    Biol Direct; 2015 Mar; 10():8. PubMed ID: 25886642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Functional Motifs from the Interface Region of Oligomeric Proteins Using Frequent Subgraph Mining.
    Saha TK; Katebi A; Dhifli W; Al Hasan M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1537-1549. PubMed ID: 28961123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015.
    Slynko I; Da Silva F; Bret G; Rognan D
    J Comput Aided Mol Des; 2016 Sep; 30(9):669-683. PubMed ID: 27480696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of RNA-binding sites in proteins by integrating various sequence information.
    Wang CC; Fang Y; Xiao J; Li M
    Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Prediction of RNA-Protein Interactions.
    Mann CM; Muppirala UK; Dobbs D
    Methods Mol Biol; 2017; 1543():169-185. PubMed ID: 28349426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction.
    Daberdaku S; Ferrari C
    BMC Bioinformatics; 2018 Feb; 19(1):35. PubMed ID: 29409446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.