These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27892852)

  • 1. Physical basis of large microtubule aster growth.
    Ishihara K; Korolev KS; Mitchison TJ
    Elife; 2016 Nov; 5():. PubMed ID: 27892852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule nucleation remote from centrosomes may explain how asters span large cells.
    Ishihara K; Nguyen PA; Groen AC; Field CM; Mitchison TJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17715-22. PubMed ID: 25468969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational model of dynein-dependent self-organization of microtubule asters.
    Cytrynbaum EN; Rodionov V; Mogilner A
    J Cell Sci; 2004 Mar; 117(Pt 8):1381-97. PubMed ID: 14996905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells.
    Mitchison T; Wühr M; Nguyen P; Ishihara K; Groen A; Field CM
    Cytoskeleton (Hoboken); 2012 Oct; 69(10):738-50. PubMed ID: 22786885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocatalytic microtubule nucleation determines the size and mass of
    Decker F; Oriola D; Dalton B; Brugués J
    Elife; 2018 Jan; 7():. PubMed ID: 29323637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA.
    Athale CA; Dinarina A; Nedelec F; Karsenti E
    Phys Biol; 2014 Feb; 11(1):016008. PubMed ID: 24476749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation.
    Félix MA; Antony C; Wright M; Maro B
    J Cell Biol; 1994 Jan; 124(1-2):19-31. PubMed ID: 8294501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial variation of microtubule depolymerization in large asters.
    Ishihara K; Decker F; Caldas P; Pelletier JF; Loose M; Brugués J; Mitchison TJ
    Mol Biol Cell; 2021 Apr; 32(9):869-879. PubMed ID: 33439671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion and formation of microtubule asters: physical processes versus biochemical regulation.
    Dogterom M; Maggs AC; Leibler S
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6683-8. PubMed ID: 7624308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytoskeleton Dynamics: Mind the Gap!
    Brugués J
    Curr Biol; 2017 Apr; 27(7):R279-R281. PubMed ID: 28376338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 51-kd protein, a component of microtubule-organizing granules in the mitotic apparatus involved in aster formation in vitro.
    Toriyama M; Ohta K; Endo S; Sakai H
    Cell Motil Cytoskeleton; 1988; 9(2):117-28. PubMed ID: 3359491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taxol inhibits the nuclear movements during fertilization and induces asters in unfertilized sea urchin eggs.
    Schatten G; Schatten H; Bestor TH; Balczon R
    J Cell Biol; 1982 Aug; 94(2):455-65. PubMed ID: 6125518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of M-phase chromatin on the anisotropy of microtubule asters.
    Dogterom M; Félix MA; Guet CC; Leibler S
    J Cell Biol; 1996 Apr; 133(1):125-40. PubMed ID: 8601601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule asters anchored by FSD1 control axoneme assembly and ciliogenesis.
    Tu HQ; Qin XH; Liu ZB; Song ZQ; Hu HB; Zhang YC; Chang Y; Wu M; Huang Y; Bai YF; Wang G; Han QY; Li AL; Zhou T; Liu F; Zhang XM; Li HY
    Nat Commun; 2018 Dec; 9(1):5277. PubMed ID: 30538248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies.
    Heidemann SR; Kirschner MW
    J Cell Biol; 1975 Oct; 67(1):105-17. PubMed ID: 1236852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster.
    Navara CS; First NL; Schatten G
    Dev Biol; 1994 Mar; 162(1):29-40. PubMed ID: 8125194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs.
    Karsenti E; Newport J; Hubble R; Kirschner M
    J Cell Biol; 1984 May; 98(5):1730-45. PubMed ID: 6725396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of maternal centrosomes in unfertilized sea urchin eggs.
    Schatten H; Walter M; Biessmann H; Schatten G
    Cell Motil Cytoskeleton; 1992; 23(1):61-70. PubMed ID: 1356637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prc1E and Kif4A control microtubule organization within and between large
    Nguyen PA; Field CM; Mitchison TJ
    Mol Biol Cell; 2018 Feb; 29(3):304-316. PubMed ID: 29187577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-motion relationships of centering microtubule asters.
    Tanimoto H; Kimura A; Minc N
    J Cell Biol; 2016 Mar; 212(7):777-87. PubMed ID: 27022090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.