BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 27892936)

  • 1. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome.
    Snijders AM; Langley SA; Kim YM; Brislawn CJ; Noecker C; Zink EM; Fansler SJ; Casey CP; Miller DR; Huang Y; Karpen GH; Celniker SE; Brown JB; Borenstein E; Jansson JK; Metz TO; Mao JH
    Nat Microbiol; 2016 Nov; 2():16221. PubMed ID: 27892936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice.
    Leamy LJ; Kelly SA; Nietfeldt J; Legge RM; Ma F; Hua K; Sinha R; Peterson DA; Walter J; Benson AK; Pomp D
    Genome Biol; 2014; 15(12):552. PubMed ID: 25516416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Gut Microbiome, Its Metabolome, and Their Relationship to Health and Disease.
    Wu GD
    Nestle Nutr Inst Workshop Ser; 2016; 84():103-10. PubMed ID: 26764479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production.
    Endesfelder D; Engel M; Davis-Richardson AG; Ardissone AN; Achenbach P; Hummel S; Winkler C; Atkinson M; Schatz D; Triplett E; Ziegler AG; zu Castell W
    Microbiome; 2016 Apr; 4():17. PubMed ID: 27114075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calorie restriction and its impact on gut microbial composition and global metabolism.
    Zheng X; Wang S; Jia W
    Front Med; 2018 Dec; 12(6):634-644. PubMed ID: 30446879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host Genetics and Gut Microbiome: Challenges and Perspectives.
    Kurilshikov A; Wijmenga C; Fu J; Zhernakova A
    Trends Immunol; 2017 Sep; 38(9):633-647. PubMed ID: 28669638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Contribution to the Human Metabolome: Implications for Health and Disease.
    Van Treuren W; Dodd D
    Annu Rev Pathol; 2020 Jan; 15():345-369. PubMed ID: 31622559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic Modeling To Monitor Host Responsiveness to Gut Microbiota Manipulation in the BTBR(T+tf/j) Mouse.
    Klein MS; Newell C; Bomhof MR; Reimer RA; Hittel DS; Rho JM; Vogel HJ; Shearer J
    J Proteome Res; 2016 Apr; 15(4):1143-50. PubMed ID: 26928523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking dietary patterns with gut microbial composition and function.
    Sheflin AM; Melby CL; Carbonero F; Weir TL
    Gut Microbes; 2017 Mar; 8(2):113-129. PubMed ID: 27960648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A meta-metabolome network of carbohydrate metabolism: interactions between gut microbiota and host.
    Ibrahim M; Anishetty S
    Biochem Biophys Res Commun; 2012 Nov; 428(2):278-84. PubMed ID: 23085046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fecal metabolome as a functional readout of the gut microbiome.
    Zierer J; Jackson MA; Kastenmüller G; Mangino M; Long T; Telenti A; Mohney RP; Small KS; Bell JT; Steves CJ; Valdes AM; Spector TD; Menni C
    Nat Genet; 2018 Jun; 50(6):790-795. PubMed ID: 29808030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Mechanisms of Colonization Resistance by the Gut Microbial Metabolome.
    Chang PV
    ACS Chem Biol; 2020 May; 15(5):1119-1126. PubMed ID: 31895538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project.
    Lopera-Maya EA; Kurilshikov A; van der Graaf A; Hu S; Andreu-Sánchez S; Chen L; Vila AV; Gacesa R; Sinha T; Collij V; Klaassen MAY; Bolte LA; Gois MFB; Neerincx PBT; Swertz MA; ; Harmsen HJM; Wijmenga C; Fu J; Weersma RK; Zhernakova A; Sanna S
    Nat Genet; 2022 Feb; 54(2):143-151. PubMed ID: 35115690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host genetics and gut microbiota cooperatively contribute to azoxymethane-induced acute toxicity in Collaborative Cross mice.
    Zhong C; He L; Lee SY; Chang H; Zhang Y; Threadgill DW; Yuan Y; Zhou F; Celniker SE; Xia Y; Snijders AM; Mao JH
    Arch Toxicol; 2021 Mar; 95(3):949-958. PubMed ID: 33458792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria.
    Kieffer DA; Piccolo BD; Marco ML; Kim EB; Goodson ML; Keenan MJ; Dunn TN; Knudsen KE; Adams SH; Martin RJ
    J Nutr; 2016 Dec; 146(12):2445-2460. PubMed ID: 27798344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the collaborative cross to identify the role of host genetics in defining the murine gut microbiome.
    Nagarajan A; Scoggin K; Gupta J; Threadgill DW; Andrews-Polymenis HL
    Microbiome; 2023 Jul; 11(1):149. PubMed ID: 37420306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiome, metabolites and host immunity.
    Levy M; Blacher E; Elinav E
    Curr Opin Microbiol; 2017 Feb; 35():8-15. PubMed ID: 27883933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens.
    Vogt SL; Peña-Díaz J; Finlay BB
    Anaerobe; 2015 Aug; 34():106-15. PubMed ID: 25958185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local and Long-Distance Calling: Conversations between the Gut Microbiota and Intra- and Extra-Gastrointestinal Tract Infections.
    Denny JE; Powell WL; Schmidt NW
    Front Cell Infect Microbiol; 2016; 6():41. PubMed ID: 27148490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary effects on human gut microbiome diversity.
    Xu Z; Knight R
    Br J Nutr; 2015 Jan; 113 Suppl(Suppl 0):S1-5. PubMed ID: 25498959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.