These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27893186)

  • 1. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue.
    Lücker A; Secomb TW; Weber B; Jenny P
    Microcirculation; 2017 Apr; 24(3):. PubMed ID: 27893186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue Oxygenation Around Capillaries: Effects of Hematocrit and Arteriole Oxygen Condition.
    Amiri FA; Zhang J
    Bull Math Biol; 2023 May; 85(6):50. PubMed ID: 37129671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local tissue oxygenation during constant red blood cell flux: a discrete source analysis of velocity and hematocrit changes.
    Tsai AG; Intaglietta M
    Microvasc Res; 1989 May; 37(3):308-22. PubMed ID: 2733603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of separate red blood cells on capillary tissue oxygenation calculated with a numerical model.
    Bos C; Hoofd L; Oostendorp T
    IMA J Math Appl Med Biol; 1996 Dec; 13(4):259-74. PubMed ID: 8968786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemorheological approach to oxygen transport between blood and tissue.
    Niimi H; Sugihara M
    Biorheology; 1984; 21(4):445-61. PubMed ID: 6487759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamic model of oxygen transport from capillaries to tissue with moving red blood cells.
    Lücker A; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H206-16. PubMed ID: 25398979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability.
    Parthasarathi K; Lipowsky HH
    Am J Physiol; 1999 Dec; 277(6):H2145-57. PubMed ID: 10600832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of flowmotion induced changes in local tissue oxygenation.
    Tsai AG; Intaglietta M
    Int J Microcirc Clin Exp; 1993 Feb; 12(1):75-88. PubMed ID: 8473071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes.
    Sharan M; Popel AS
    J Theor Biol; 2002 Jun; 216(4):479-500. PubMed ID: 12151262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer.
    Kindig CA; Richardson TE; Poole DC
    J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local tissue oxygenation by statistically distributed sources.
    Tsai AG; Intaglietta M
    Microvasc Res; 1992 Sep; 44(2):200-13. PubMed ID: 1474927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aging on capillary geometry and hemodynamics in rat spinotrapezius muscle.
    Russell JA; Kindig CA; Behnke BJ; Poole DC; Musch TI
    Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H251-8. PubMed ID: 12649079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of oxygen supply in the cerebral circulation.
    Hudetz AG
    Adv Exp Med Biol; 1997; 428():513-20. PubMed ID: 9500093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sepsis on skeletal muscle oxygen consumption and tissue oxygenation: interpreting capillary oxygen transport data using a mathematical model.
    Goldman D; Bateman RM; Ellis CG
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2535-44. PubMed ID: 15319199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of hemoconcentration on arteriolar oxygen transport in hamster striated muscle.
    Kuo L; Pittman RN
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1694-702. PubMed ID: 2260696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear model for capillary-tissue oxygen transport and metabolism.
    Li Z; Yipintsoi T; Bassingthwaighte JB
    Ann Biomed Eng; 1997; 25(4):604-19. PubMed ID: 9236974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport.
    Chen X; Jaron D; Barbee KA; Buerk DG
    J Appl Physiol (1985); 2006 Feb; 100(2):482-92. PubMed ID: 16210436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hemodilution on RBC velocity, supply rate, and hematocrit in the cerebral capillary network.
    Hudetz AG; Wood JD; Biswal BB; Krolo I; Kampine JP
    J Appl Physiol (1985); 1999 Aug; 87(2):505-9. PubMed ID: 10444605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.