BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 27893376)

  • 21. Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers.
    Maresca D; Renaud G; van Soest G; Li X; Zhou Q; Shung KK; de Jong N; van der Steen AF
    Ultrasound Med Biol; 2013 Apr; 39(4):706-13. PubMed ID: 23384459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multifunctional, reconfigurable pulse generator for high-frequency ultrasound imaging.
    Qiu W; Yu Y; Tsang F; Sun L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1558-67. PubMed ID: 22828850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A robust 3-D IVUS transducer tracking using single-plane cineangiography.
    Jourdain M; Meunier J; Sequeira J; Boï JM; Tardif JC
    IEEE Trans Inf Technol Biomed; 2008 May; 12(3):307-14. PubMed ID: 18693498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Dual-Frequency Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Tissue Harmonic Imaging.
    Lee J; Shin EJ; Lee C; Chang JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1571-1582. PubMed ID: 29994203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film.
    Li X; Wu W; Chung Y; Shih WY; Shih WH; Zhou Q; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2281-8. PubMed ID: 22083761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.
    Lindsey BD; Martin KH; Jiang X; Dayton PA
    Ultrasonics; 2016 Aug; 70():123-35. PubMed ID: 27161022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harmonic intravascular ultrasound imaging with a dual-frequency catheter.
    Frijlink ME; Goertz DE; Vos HJ; Tesselaar E; Blacquière G; Gisolf A; Krams R; van der Steen AF
    Ultrasound Med Biol; 2006 Nov; 32(11):1649-54. PubMed ID: 17112951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.
    Kim J; Li S; Kasoji S; Dayton PA; Jiang X
    Ultrasonics; 2015 Dec; 63():7-15. PubMed ID: 26112426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Intravascular Ultrasound Catheter-Based Transducers Using the Resolution Integral.
    McLeod C; Moran CM; McBride KA; Pye SD
    Ultrasound Med Biol; 2018 Dec; 44(12):2802-2812. PubMed ID: 30146091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-frequency intravascular ultrasound (IVUS) imaging.
    Ma T; Yu M; Li J; Munding CE; Chen Z; Fei C; Shung KK; Zhou Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):97-107. PubMed ID: 25585394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PMN-PT Single Crystal Ultrasonic Transducer With Half-Concave Geometric Design for IVUS Imaging.
    Fei C; Yang Y; Guo F; Lin P; Chen Q; Zhou Q; Sun L
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2087-2092. PubMed ID: 29989942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A ring transducer system for medical ultrasound research.
    Waag RC; Fedewa RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1707-18. PubMed ID: 17036780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.
    Hu CH; Xu XC; Cannata JM; Yen JT; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Feb; 53(2):317-23. PubMed ID: 16529106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.
    Gurun G; Tekes C; Zahorian J; Xu T; Satir S; Karaman M; Hasler J; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):239-50. PubMed ID: 24474131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging.
    Kang S; Lee J; Chang JH
    Ultrasonics; 2021 May; 113():106364. PubMed ID: 33517139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An FPGA-based ultrasound imaging system using capacitive micromachined ultrasonic transducers.
    Wong LL; Chen AI; Logan AS; Yeow JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1513-20. PubMed ID: 22828846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer.
    Zemp RJ; Bitton R; Li ML; Shung KK; Stoica G; Wang LV
    J Biomed Opt; 2007; 12(1):010501. PubMed ID: 17343475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.
    Shih CC; Lai TY; Huang CC
    Ultrasonics; 2016 Aug; 70():64-74. PubMed ID: 27135187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.
    Hu CH; Snook KA; Cao PJ; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Feb; 53(2):309-16. PubMed ID: 16529105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.
    Li X; Yang J; Ding M; Yuchi M
    Biomed Mater Eng; 2015; 26 Suppl 1():S1579-85. PubMed ID: 26405923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.