These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27893397)

  • 1. Capacity and Delay Spread in Multilayer Diffusion-Based Molecular Communication (DBMC) Channel.
    Md Mustam S; Syed-Yusof SK; Zubair S
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):599-612. PubMed ID: 27893397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale communication with molecular arrays in nanonetworks.
    Atakan B; Galmes S; Akan OB
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):149-60. PubMed ID: 22287254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Analytical Model for Molecular Propagation in Nanocommunication via Filaments Using Relay-Enabled Nodes.
    Darchinimaragheh K; Alfa AS
    IEEE Trans Nanobioscience; 2015 Dec; 14(8):870-81. PubMed ID: 26529773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Electrical Model for Advection-Diffusion-Based Molecular Communication in Nanonetworks.
    Azadi M; Abouei J
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):246-57. PubMed ID: 27046879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wiener and Kalman Detection Methods for Molecular Communications.
    Aslan E; Celebi ME; Pekergin F
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):256-264. PubMed ID: 35073269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equivalent Discrete-Time Channel Modeling for Molecular Communication With Emphasize on an Absorbing Receiver.
    Damrath M; Korte S; Hoeher PA
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):60-68. PubMed ID: 28092568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shannon Meets Fick on the Microfluidic Channel: Diffusion Limit to Sum Broadcast Capacity for Molecular Communication.
    Bicen AO; Lehtomaki JJ; Akyildiz IF
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):88-94. PubMed ID: 29570079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative Target Tracking Algorithm Based on Massive Beacon Coordinates System in Directional Molecular Communication.
    Yue G; Liu Q
    IEEE Trans Nanobioscience; 2022 Jul; 21(3):405-415. PubMed ID: 35380965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular communication using Brownian motion with drift.
    Kadloor S; Adve RS; Eckford AW
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):89-99. PubMed ID: 22434820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ISI-Aware Channel Code Design for Molecular Communication via Diffusion.
    Kislal AO; Yilmaz HB; Pusane AE; Tugcu T
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):205-213. PubMed ID: 30802871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An End-to-End Model of Plant Pheromone Channel for Long Range Molecular Communication.
    Unluturk BD; Akyildiz IF
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):11-20. PubMed ID: 28113950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo Analysis of Molecule Absorption Probabilities in Diffusion-Based Nanoscale Communication Systems with Multiple Receivers.
    Arifler D; Arifler D
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):157-165. PubMed ID: 28368824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Dual Threshold Algorithm for Diffusion-Based Molecular MIMO Communications.
    Liu Q; Lu Z; Yang K
    IEEE Trans Nanobioscience; 2021 Oct; 20(4):416-425. PubMed ID: 33945482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achievable Strength-Based Signal Detection in Quantity-Constrained PAM OOK Concentration-Encoded Molecular Communication.
    Mahfuz MU
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):619-626. PubMed ID: 27834649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems.
    Lin L; Wu Q; Liu F; Yan H
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):507-517. PubMed ID: 30235143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things.
    Abbasi NA; Akan OB
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):783-791. PubMed ID: 29028203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration-Encoded Subdiffusive Molecular Communication: Theory, Channel Characteristics, and Optimum Signal Detection.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2016 Sep; 15(6):533-548. PubMed ID: 27824576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and analysis of molecular relay channels: an information theoretic approach.
    Nakano T; Liu JQ
    IEEE Trans Nanobioscience; 2010 Sep; 9(3):213-21. PubMed ID: 20525537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial Distance Estimation and Signal Detection for Diffusive Mobile Molecular Communication.
    Huang S; Lin L; Guo W; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):422-433. PubMed ID: 32275604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanonetworks in Biomedical Applications.
    Marzo JL; Jornet JM; Pierobon M
    Curr Drug Targets; 2019; 20(8):800-807. PubMed ID: 30648507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.