These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27893606)

  • 1. Cochlear, brainstem, and psychophysical responses show spectrotemporal tradeoff in human auditory processing.
    Bidelman GM; Bhagat SP
    Neuroreport; 2017 Jan; 28(1):17-22. PubMed ID: 27893606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrotemporal resolution tradeoff in auditory processing as revealed by human auditory brainstem responses and psychophysical indices.
    Bidelman GM; Syed Khaja A
    Neurosci Lett; 2014 Jun; 572():53-7. PubMed ID: 24793771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musical experience sharpens human cochlear tuning.
    Bidelman GM; Nelms C; Bhagat SP
    Hear Res; 2016 May; 335():40-46. PubMed ID: 26900073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between speech-evoked auditory brainstem responses and transient evoked otoacoustic emissions.
    Rana B; Barman A
    J Laryngol Otol; 2011 Sep; 125(9):911-6. PubMed ID: 21729428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of cochlear delay estimates using otoacoustic emissions and auditory brainstem responses.
    Harte JM; Pigasse G; Dau T
    J Acoust Soc Am; 2009 Sep; 126(3):1291-301. PubMed ID: 19739743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the relationship between physiological measures of cochlear and brainstem function.
    Dhar S; Abel R; Hornickel J; Nicol T; Skoe E; Zhao W; Kraus N
    Clin Neurophysiol; 2009 May; 120(5):959-66. PubMed ID: 19346159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners.
    Charaziak KK; Souza PE; Siegel JH
    Int J Audiol; 2015 Feb; 54(2):96-105. PubMed ID: 25290042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Psychophysical measures from electrical stimulation of the human cochlear nucleus.
    Shannon RV; Otto SR
    Hear Res; 1990 Aug; 47(1-2):159-68. PubMed ID: 2228792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual differences in the attentional modulation of the human auditory brainstem response to speech inform on speech-in-noise deficits.
    Saiz-Alía M; Forte AE; Reichenbach T
    Sci Rep; 2019 Oct; 9(1):14131. PubMed ID: 31575950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.
    Grose JH; Buss E; Hall JW
    Trends Hear; 2017; 21():2331216517737417. PubMed ID: 29105620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative comparison of electrically and acoustically evoked auditory perception: implications for the location of perceptual mechanisms.
    Shannon RV
    Prog Brain Res; 1993; 97():261-9. PubMed ID: 8234752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional modeling of the human auditory brainstem response to broadband stimulation.
    Verhulst S; Bharadwaj HM; Mehraei G; Shera CA; Shinn-Cunningham BG
    J Acoust Soc Am; 2015 Sep; 138(3):1637-59. PubMed ID: 26428802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human auditory brainstem response to temporal gaps in noise.
    Werner LA; Folsom RC; Mancl LR; Syapin CL
    J Speech Lang Hear Res; 2001 Aug; 44(4):737-50. PubMed ID: 11521768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning.
    Charaziak KK; Souza P; Siegel JH
    J Assoc Res Otolaryngol; 2013 Dec; 14(6):843-62. PubMed ID: 24013802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutation of OPA1 gene causes deafness by affecting function of auditory nerve terminals.
    Huang T; Santarelli R; Starr A
    Brain Res; 2009 Dec; 1300():97-104. PubMed ID: 19733158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An objective assessment method for frequency selectivity of the human auditory system.
    Gong Q; Wang Y; Xian M
    Biomed Eng Online; 2014 Dec; 13():171. PubMed ID: 25522838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity.
    Strelcyk O; Christoforidis D; Dau T
    J Acoust Soc Am; 2009 Oct; 126(4):1878-88. PubMed ID: 19813802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cochlear contributions to the precedence effect.
    Verhulst S; Bianchi F; Dau T
    Adv Exp Med Biol; 2013; 787():283-91. PubMed ID: 23716234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.