These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27893606)

  • 21. Cochlear contributions to the precedence effect.
    Verhulst S; Bianchi F; Dau T
    Adv Exp Med Biol; 2013; 787():283-91. PubMed ID: 23716234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Searching for the optimal stimulus eliciting auditory brainstem responses in humans.
    Fobel O; Dau T
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2213-22. PubMed ID: 15532653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds.
    Mehraei G; Gallardo AP; Shinn-Cunningham BG; Dau T
    Hear Res; 2017 Mar; 346():34-44. PubMed ID: 28159652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of probe level on the tuning of stimulus frequency otoacoustic emissions and behavioral test in human.
    Wang Y; Gong Q; Zhang T
    Biomed Eng Online; 2016 May; 15(1):51. PubMed ID: 27160830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of stimulus frequency otoacoustic emissions by contralateral noise.
    Souter M
    Hear Res; 1995 Nov; 91(1-2):167-77. PubMed ID: 8647718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of various durations of noise exposure on auditory brainstem response, distortion product otoacoustic emissions and transient evoked otoacoustic emissions in rats.
    Fraenkel R; Freeman S; Sohmer H
    Audiol Neurootol; 2001; 6(1):40-9. PubMed ID: 11173774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CD1 hearing-impaired mice. I: Distortion product otoacoustic emission levels, cochlear function and morphology.
    Le Calvez S; Avan P; Gilain L; Romand R
    Hear Res; 1998 Jun; 120(1-2):37-50. PubMed ID: 9667429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental evidence for a cochlear source of the precedence effect.
    Bianchi F; Verhulst S; Dau T
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):767-79. PubMed ID: 23903865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions.
    Bentsen T; Harte JM; Dau T
    J Acoust Soc Am; 2011 Jun; 129(6):3797-807. PubMed ID: 21682403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fos-like immunoreactivity in the auditory brainstem evoked by bipolar intracochlear electrical stimulation: effects of current level and pulse duration.
    Saito H; Miller JM; Pfingst BE; Altschuler RA
    Neuroscience; 1999; 91(1):139-61. PubMed ID: 10336066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of selective auditory-nerve damage on the behavioral audiogram and temporal integration in the budgerigar.
    Wong SJ; Abrams KS; Amburgey KN; Wang Y; Henry KS
    Hear Res; 2019 Mar; 374():24-34. PubMed ID: 30703625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A series of notched-noise embedded chirps for objective frequency specific hearing examinations.
    Corona-Strauss FI; Strauss DJ; Schick B; Delb W
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2074-7. PubMed ID: 19964574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing Cochlear-Place Specific Temporal Coding Using Multi-Band Complex Tones to Measure Envelope-Following Responses.
    Wang L; Bharadwaj H; Shinn-Cunningham B
    Neuroscience; 2019 May; 407():67-74. PubMed ID: 30826519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-Related Changes in the Auditory Brainstem Response and Suprathreshold Processing of Temporal and Spectral Modulation.
    Grose JH; Buss E; Elmore H
    Trends Hear; 2019; 23():2331216519839615. PubMed ID: 30977442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans.
    Sumner CJ; Wells TT; Bergevin C; Sollini J; Kreft HA; Palmer AR; Oxenham AJ; Shera CA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11322-11326. PubMed ID: 30322908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise.
    Papakonstantinou A; Strelcyk O; Dau T
    Hear Res; 2011 Oct; 280(1-2):30-7. PubMed ID: 21354285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.