These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 27893761)
1. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections. Zhu X; Qiu H PLoS One; 2016; 11(11):e0166567. PubMed ID: 27893761 [TBL] [Abstract][Full Text] [Related]
2. Dissimilarity sparsity-preserving projections in feature extraction for visual recognition. Xiang F; Wang Z; Yuan X Appl Opt; 2013 Jul; 52(20):5022-9. PubMed ID: 23852218 [TBL] [Abstract][Full Text] [Related]
3. Regularized locality preserving projections and its extensions for face recognition. Lu J; Tan YP IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):958-63. PubMed ID: 19906590 [TBL] [Abstract][Full Text] [Related]
4. Matrix exponential based discriminant locality preserving projections for feature extraction. Lu GF; Wang Y; Zou J; Wang Z Neural Netw; 2018 Jan; 97():127-136. PubMed ID: 29096201 [TBL] [Abstract][Full Text] [Related]
5. Spike sorting using locality preserving projection with gap statistics and landmark-based spectral clustering. Nguyen T; Khosravi A; Creighton D; Nahavandi S J Neurosci Methods; 2014 Dec; 238():43-53. PubMed ID: 25256647 [TBL] [Abstract][Full Text] [Related]
6. Human Activity Recognition Using Gaussian Mixture Hidden Conditional Random Fields. Siddiqi MH; Alruwaili M; Ali A; Alanazi S; Zeshan F Comput Intell Neurosci; 2019; 2019():8590560. PubMed ID: 31915429 [TBL] [Abstract][Full Text] [Related]
7. Locality preserving score for joint feature weights learning. Yan H; Yang J Neural Netw; 2015 Sep; 69():126-34. PubMed ID: 26113239 [TBL] [Abstract][Full Text] [Related]
8. Influence of time and length size feature selections for human activity sequences recognition. Fang H; Chen L; Srinivasan R ISA Trans; 2014 Jan; 53(1):134-40. PubMed ID: 24075148 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Gao L; Bourke AK; Nelson J Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448 [TBL] [Abstract][Full Text] [Related]
10. Video-based human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis. Siddiqi MH; Ali R; Rana MS; Hong EK; Kim ES; Lee S Sensors (Basel); 2014 Apr; 14(4):6370-92. PubMed ID: 24714390 [TBL] [Abstract][Full Text] [Related]
12. A novel feature selection approach for biomedical data classification. Peng Y; Wu Z; Jiang J J Biomed Inform; 2010 Feb; 43(1):15-23. PubMed ID: 19647098 [TBL] [Abstract][Full Text] [Related]
13. Human gait recognition using patch distribution feature and locality-constrained group sparse representation. Xu D; Huang Y; Zeng Z; Xu X IEEE Trans Image Process; 2012 Jan; 21(1):316-26. PubMed ID: 21724511 [TBL] [Abstract][Full Text] [Related]
14. The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data. Cheng Q; Zhou H; Cheng J IEEE Trans Pattern Anal Mach Intell; 2011 Jun; 33(6):1217-33. PubMed ID: 21493968 [TBL] [Abstract][Full Text] [Related]
15. Maximum confidence hidden markov modeling for face recognition. Chien JT; Liao CP IEEE Trans Pattern Anal Mach Intell; 2008 Apr; 30(4):606-16. PubMed ID: 18276967 [TBL] [Abstract][Full Text] [Related]
16. Locality-preserved maximum information projection. Wang H; Chen S; Hu Z; Zheng W IEEE Trans Neural Netw; 2008 Apr; 19(4):571-85. PubMed ID: 18390305 [TBL] [Abstract][Full Text] [Related]
17. Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition. Zhang S; Wu X; You Z PLoS One; 2017; 12(6):e0178317. PubMed ID: 28591147 [TBL] [Abstract][Full Text] [Related]
18. Direct discriminant locality preserving projection with Hammerstein polynomial expansion. Chen X; Zhang J; Li D IEEE Trans Image Process; 2012 Dec; 21(12):4858-67. PubMed ID: 23008254 [TBL] [Abstract][Full Text] [Related]
19. Improving the recognition of eating gestures using intergesture sequential dependencies. Ramos-Garcia RI; Muth ER; Gowdy JN; Hoover AW IEEE J Biomed Health Inform; 2015 May; 19(3):825-31. PubMed ID: 24919205 [TBL] [Abstract][Full Text] [Related]
20. Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. Aung MS; Thies SB; Kenney LP; Howard D; Selles RW; Findlow AH; Goulermas JY IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):908-16. PubMed ID: 23322764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]