These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27893801)

  • 1. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms.
    Avrahami I; Kersh D; Liberzon A
    PLoS One; 2016; 11(11):e0166426. PubMed ID: 27893801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.
    Walker AM; Johnston CR; Rival DE
    J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of stenosis severity on the hemodynamic parameters-assessment of the correlation between stress phase angle and wall shear stress.
    Sadeghi MR; Shirani E; Tafazzoli-Shadpour M; Samaee M
    J Biomech; 2011 Oct; 44(15):2614-26. PubMed ID: 21906742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear stress rosettes capture the complex flow physics in diseased arteries.
    Vamsi Krishna C; Chandran Suja V; Watton PN; Arakeri JH; Gundiah N
    J Biomech; 2020 May; 104():109721. PubMed ID: 32151376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational fluid dynamics study on hemodynamics for different locations of the distal anastomosis of a bypass nearby a collateral vessel in the femoropopliteal area.
    Rivera J; van der Graaf GB; Escudero JR; Bellmunt S; van de Vosse F
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1263-77. PubMed ID: 24916477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive measurement of steady and pulsating velocity profiles and shear rates in arteries using echo PIV: in vitro validation studies.
    Kim HB; Hertzberg J; Lanning C; Shandas R
    Ann Biomed Eng; 2004 Aug; 32(8):1067-76. PubMed ID: 15446503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wall shear stress variations in a 90-degree bifurcation in 3D pulsating flows.
    Evegren P; Fuchs L; Revstedt J
    Med Eng Phys; 2010 Mar; 32(2):189-202. PubMed ID: 20034837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses.
    Zhang C; Xie S; Li S; Pu F; Deng X; Fan Y; Li D
    J Biomech; 2012 Jan; 45(1):83-9. PubMed ID: 22079384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pulsatile swirling flow on stenosed arterial blood flow.
    Ha H; Lee SJ
    Med Eng Phys; 2014 Sep; 36(9):1106-14. PubMed ID: 24984589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro comparison of the effect of stent configuration on wall shear stress using time-resolved particle image velocimetry.
    Charonko J; Karri S; Schmieg J; Prabhu S; Vlachos P
    Ann Biomed Eng; 2010 Mar; 38(3):889-902. PubMed ID: 20099035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and estimation of turbulence-related wall shear stress in patient-specific pulsatile blood flow.
    Andersson M; Ebbers T; Karlsson M
    J Biomech; 2019 Mar; 85():108-117. PubMed ID: 30704762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmentative effect of pulsatility on the wall shear stress in tube flow.
    Nakata M; Tatsumi E; Tsukiya T; Taenaka Y; Nishimura T; Nishinaka T; Takano H; Masuzawa T; Ohba K
    Artif Organs; 1999 Aug; 23(8):727-31. PubMed ID: 10463497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atherosclerotic indicators for blood-like fluids in 90-degree arterial-like bifurcations.
    van Wyk S; Prahl Wittberg L; Fuchs L
    Comput Biol Med; 2014 Jul; 50():56-69. PubMed ID: 24835086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pulse rate variation on blood flow through axisymmetric and asymmetric stenotic artery models.
    Sood T; Roy S; Pathak M
    Math Biosci; 2018 Apr; 298():1-18. PubMed ID: 29408628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of wall shear rate throughout the arterial tree: a case study.
    Stroev PV; Hoskins PR; Easson WJ
    Atherosclerosis; 2007 Apr; 191(2):276-80. PubMed ID: 16828101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.