These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 27894051)
1. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys - ZK40xSr. Chen L; Bin Y; Zou W; Wang X; Li W J Mech Behav Biomed Mater; 2017 Feb; 66():187-200. PubMed ID: 27894051 [TBL] [Abstract][Full Text] [Related]
2. Effect of the Microstructure and Distribution of the Second Phase on the Stress Corrosion Cracking of Biomedical Mg-Zn-Zr-xSr Alloys. Chen L; Sheng Y; Wang X; Zhao X; Liu H; Li W Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29614043 [TBL] [Abstract][Full Text] [Related]
3. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
4. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo assessment of squeeze-cast Mg-Zn-Ca-Mn alloys for biomedical applications. Cho DH; Avey T; Nam KH; Dean D; Luo AA Acta Biomater; 2022 Sep; 150():442-455. PubMed ID: 35914693 [TBL] [Abstract][Full Text] [Related]
6. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163 [TBL] [Abstract][Full Text] [Related]
7. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Munir K; Lin J; Wen C; Wright PFA; Li Y Acta Biomater; 2020 Jan; 102():493-507. PubMed ID: 31811958 [TBL] [Abstract][Full Text] [Related]
8. Effects of Sr on the microstructure, mechanical properties and corrosion behavior of Mg-2Zn-xSr alloys. Lai H; Li J; Li J; Zhang Y; Xu Y J Mater Sci Mater Med; 2018 Jun; 29(6):87. PubMed ID: 29896643 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Brar HS; Wong J; Manuel MV J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. Bornapour M; Muja N; Shum-Tim D; Cerruti M; Pekguleryuz M Acta Biomater; 2013 Feb; 9(2):5319-30. PubMed ID: 22871640 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Gu XN; Xie XH; Li N; Zheng YF; Qin L Acta Biomater; 2012 Jul; 8(6):2360-74. PubMed ID: 22387336 [TBL] [Abstract][Full Text] [Related]
14. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes. Hakimi O; Aghion E; Goldman J Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():226-32. PubMed ID: 25842129 [TBL] [Abstract][Full Text] [Related]
15. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Törne K; Örnberg A; Weissenrieder J Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765 [TBL] [Abstract][Full Text] [Related]
16. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation. Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262 [TBL] [Abstract][Full Text] [Related]
17. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application. Han J; Wan P; Ge Y; Fan X; Tan L; Li J; Yang K Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():799-811. PubMed ID: 26478374 [TBL] [Abstract][Full Text] [Related]
18. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid. Jafari S; Singh Raman RK Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():278-287. PubMed ID: 28575985 [TBL] [Abstract][Full Text] [Related]
19. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993 [TBL] [Abstract][Full Text] [Related]
20. Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity. Guan RG; Johnson I; Cui T; Zhao T; Zhao ZY; Li X; Liu H J Biomed Mater Res A; 2012 Apr; 100(4):999-1015. PubMed ID: 22307984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]