These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 27894051)
41. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys. Lu Y; Bradshaw AR; Chiu YL; Jones IP Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():480-6. PubMed ID: 25579949 [TBL] [Abstract][Full Text] [Related]
42. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals. Koo Y; Jang Y; Yun Y Mater Sci Eng B Solid State Mater Adv Technol; 2017 May; 219():45-54. PubMed ID: 29520128 [TBL] [Abstract][Full Text] [Related]
43. Strengthening of Mg based alloy through grain refinement for orthopaedic application. Nayak S; Bhushan B; Jayaganthan R; Gopinath P; Agarwal RD; Lahiri D J Mech Behav Biomed Mater; 2016 Jun; 59():57-70. PubMed ID: 26745721 [TBL] [Abstract][Full Text] [Related]
44. Magnesium alloys as implant materials--principles of property design for Mg-RE alloys. Hort N; Huang Y; Fechner D; Störmer M; Blawert C; Witte F; Vogt C; Drücker H; Willumeit R; Kainer KU; Feyerabend F Acta Biomater; 2010 May; 6(5):1714-25. PubMed ID: 19788945 [TBL] [Abstract][Full Text] [Related]
45. Data analysis of the influence of microstructure, composition, and loading conditions on stress corrosion cracking behavior of Mg alloys. Gu J; Wieland DCF; Tolnai D; Hindenlang B; Pereira da Silva JG; Willumeit-Römer R; Höche D J Mech Behav Biomed Mater; 2024 Jun; 154():106510. PubMed ID: 38593720 [TBL] [Abstract][Full Text] [Related]
46. Improving stress corrosion cracking behavior of AZ31 alloy with conformal thin titania and zirconia coatings for biomedical applications. Peron M; Bin Afif A; Dadlani AL; Berto F; Torgersen J J Mech Behav Biomed Mater; 2020 Nov; 111():104005. PubMed ID: 32769072 [TBL] [Abstract][Full Text] [Related]
47. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Li HF; Xie XH; Zheng YF; Cong Y; Zhou FY; Qiu KJ; Wang X; Chen SH; Huang L; Tian L; Qin L Sci Rep; 2015 May; 5():10719. PubMed ID: 26023878 [TBL] [Abstract][Full Text] [Related]
48. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. Mostaed E; Sikora-Jasinska M; Mostaed A; Loffredo S; Demir AG; Previtali B; Mantovani D; Beanland R; Vedani M J Mech Behav Biomed Mater; 2016 Jul; 60():581-602. PubMed ID: 27062241 [TBL] [Abstract][Full Text] [Related]
49. Microstructure, mechanical and corrosion properties of Mg-Dy-Gd-Zr alloys for medical applications. Yang L; Huang Y; Feyerabend F; Willumeit R; Mendis C; Kainer KU; Hort N Acta Biomater; 2013 Nov; 9(10):8499-508. PubMed ID: 23523938 [TBL] [Abstract][Full Text] [Related]
51. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
52. Atomic layer deposited ZrO Yang Q; Yuan W; Liu X; Zheng Y; Cui Z; Yang X; Pan H; Wu S Acta Biomater; 2017 Aug; 58():515-526. PubMed ID: 28611003 [TBL] [Abstract][Full Text] [Related]
53. Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining. Peron M; Bertolini R; Ghiotti A; Torgersen J; Bruschi S; Berto F J Mech Behav Biomed Mater; 2020 Jan; 101():103429. PubMed ID: 31522123 [TBL] [Abstract][Full Text] [Related]
54. Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior. Shangguan Y; Wan P; Tan L; Fan X; Qin L; Yang K J Colloid Interface Sci; 2016 Nov; 481():1-12. PubMed ID: 27450886 [TBL] [Abstract][Full Text] [Related]
55. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy. Harandi SE; Banerjee PC; Easton CD; Singh Raman RK Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():335-345. PubMed ID: 28866172 [TBL] [Abstract][Full Text] [Related]
56. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. Tang Z; Niu J; Huang H; Zhang H; Pei J; Ou J; Yuan G J Mech Behav Biomed Mater; 2017 Aug; 72():182-191. PubMed ID: 28499166 [TBL] [Abstract][Full Text] [Related]
57. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Bagherifard S; Hickey DJ; Fintová S; Pastorek F; Fernandez-Pariente I; Bandini M; Webster TJ; Guagliano M Acta Biomater; 2018 Jan; 66():93-108. PubMed ID: 29183850 [TBL] [Abstract][Full Text] [Related]
58. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Kannan MB; Raman RK Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746 [TBL] [Abstract][Full Text] [Related]
59. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application. Shuai C; Zhou Y; Lin X; Yang Y; Gao C; Shuai X; Wu H; Liu X; Wu P; Feng P J Mater Sci Mater Med; 2017 Jan; 28(1):13. PubMed ID: 27995491 [TBL] [Abstract][Full Text] [Related]
60. Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy. Lin DJ; Hung FY; Lui TS; Yeh ML Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():300-8. PubMed ID: 25842139 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]