These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27894103)

  • 1. An efficient iterative CBCT reconstruction approach using gradient projection sparse reconstruction algorithm.
    Lee HC; Song B; Kim JS; Jung JJ; Li HH; Mutic S; Park JC
    Oncotarget; 2016 Dec; 7(52):87342-87350. PubMed ID: 27894103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
    Park JC; Zhang H; Chen Y; Fan Q; Li JG; Liu C; Lu B
    Phys Med Biol; 2015 Dec; 60(23):9157-83. PubMed ID: 26562284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of four-dimensional cone-beam computed tomography by compressed sensing with Bregman iteration.
    Choi K; Fahimian BP; Li T; Suh TS; Lei X
    J Xray Sci Technol; 2013; 21(2):177-92. PubMed ID: 23694910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.
    Jia X; Lou Y; Li R; Song WY; Jiang SB
    Med Phys; 2010 Apr; 37(4):1757-60. PubMed ID: 20443497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions.
    Song B; Park JC; Song WY
    Phys Med Biol; 2014 Nov; 59(21):6565-82. PubMed ID: 25320866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast iteration approach to undersampled cone-beam CT reconstruction.
    Zhu Y; Liu Y; Zhang Q; Zhang C; Gao X
    J Xray Sci Technol; 2019; 27(1):111-129. PubMed ID: 30507602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction.
    Xu Q; Yang D; Tan J; Sawatzky A; Anastasio MA
    Med Phys; 2016 Apr; 43(4):1849. PubMed ID: 27036582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion-map constrained image reconstruction (MCIR): application to four-dimensional cone-beam computed tomography.
    Park JC; Kim JS; Park SH; Liu Z; Song B; Song WY
    Med Phys; 2013 Dec; 40(12):121710. PubMed ID: 24320496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fused analytical and iterative reconstruction (AIR) via modified proximal forward-backward splitting: a FDK-based iterative image reconstruction example for CBCT.
    Gao H
    Phys Med Biol; 2016 Oct; 61(19):7187-7204. PubMed ID: 27649259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Few-view cone-beam CT reconstruction with deformed prior image.
    Zhang H; Ouyang L; Huang J; Ma J; Chen W; Wang J
    Med Phys; 2014 Dec; 41(12):121905. PubMed ID: 25471965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GPU-based iterative cone-beam CT reconstruction using tight frame regularization.
    Jia X; Dong B; Lou Y; Jiang SB
    Phys Med Biol; 2011 Jul; 56(13):3787-807. PubMed ID: 21628778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical Low-Dose CBCT Reconstruction Using Non-local Total Variation Regularization for Image Guided Radiation Therapy.
    Sohn JJ; Kim C; Kim DH; Lee SR; Zhou J; Yang X; Liu T
    Front Oncol; 2020; 10():242. PubMed ID: 32175282
    [No Abstract]   [Full Text] [Related]  

  • 16. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: cone/ring artifact correction and multiple GPU implementation.
    Yan H; Wang X; Shi F; Bai T; Folkerts M; Cervino L; Jiang SB; Jia X
    Med Phys; 2014 Nov; 41(11):111912. PubMed ID: 25370645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
    Park JC; Park SH; Kim JS; Han Y; Cho MK; Kim HK; Liu Z; Jiang SB; Song B; Song WY
    Technol Cancer Res Treat; 2011 Aug; 10(4):295-306. PubMed ID: 21728386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressed sensing based cone-beam computed tomography reconstruction with a first-order method.
    Choi K; Wang J; Zhu L; Suh TS; Boyd S; Xing L
    Med Phys; 2010 Sep; 37(9):5113-25. PubMed ID: 20964231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints.
    Lee H; Xing L; Davidi R; Li R; Qian J; Lee R
    Phys Med Biol; 2012 Apr; 57(8):2287-307. PubMed ID: 22460008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.