These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27895090)

  • 1. Identification of roles for H264, H306, H439, and H635 in acid-dependent lipoprotein release by the LDL receptor.
    Dong H; Zhao Z; LeBrun DG; Michaely P
    J Lipid Res; 2017 Feb; 58(2):364-374. PubMed ID: 27895090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of calcium in lipoprotein release by the low-density lipoprotein receptor.
    Zhao Z; Michaely P
    Biochemistry; 2009 Aug; 48(30):7313-24. PubMed ID: 19583244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epidermal growth factor homology domain of the LDL receptor drives lipoprotein release through an allosteric mechanism involving H190, H562, and H586.
    Zhao Z; Michaely P
    J Biol Chem; 2008 Sep; 283(39):26528-37. PubMed ID: 18677035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complex of the insect LDL receptor homolog, lipophorin receptor, LpR, and its lipoprotein ligand does not dissociate under endosomal conditions.
    Roosendaal SD; Kerver J; Schipper M; Rodenburg KW; Van der Horst DJ
    FEBS J; 2008 Apr; 275(8):1751-66. PubMed ID: 18331356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of an intramolecular contact on lipoprotein uptake by the LDL receptor.
    Zhao Z; Michaely P
    Biochim Biophys Acta; 2011 Jun; 1811(6):397-408. PubMed ID: 21511053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular fate of LDL receptor family members depends on the cooperation between their ligand-binding and EGF domains.
    Van Hoof D; Rodenburg KW; Van der Horst DJ
    J Cell Sci; 2005 Mar; 118(Pt 6):1309-20. PubMed ID: 15741231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of low density lipoprotein (LDL) release in the endosome: implications of the stability and Ca2+ affinity of the fifth binding module of the LDL receptor.
    Arias-Moreno X; Velazquez-Campoy A; Rodríguez JC; Pocoví M; Sancho J
    J Biol Chem; 2008 Aug; 283(33):22670-9. PubMed ID: 18574243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative fluorescence imaging reveals point of release for lipoproteins during LDLR-dependent uptake.
    Pompey S; Zhao Z; Luby-Phelps K; Michaely P
    J Lipid Res; 2013 Mar; 54(3):744-753. PubMed ID: 23296879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins.
    Fischer AW; Albers K; Krott LM; Hoffzimmer B; Heine M; Schmale H; Scheja L; Gordts PLSM; Heeren J
    Mol Metab; 2018 Oct; 16():88-99. PubMed ID: 30100244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The low-density lipoprotein receptor: ligands, debates and lore.
    Rudenko G; Deisenhofer J
    Curr Opin Struct Biol; 2003 Dec; 13(6):683-9. PubMed ID: 14675545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor.
    Beglova N; Jeon H; Fisher C; Blacklow SC
    Mol Cell; 2004 Oct; 16(2):281-92. PubMed ID: 15494314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for ligand capture and release by the endocytic receptor ApoER2.
    Hirai H; Yasui N; Yamashita K; Tabata S; Yamamoto M; Takagi J; Nogi T
    EMBO Rep; 2017 Jun; 18(6):982-999. PubMed ID: 28446613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular studies of pH-dependent ligand interactions with the low-density lipoprotein receptor.
    Yamamoto T; Chen HC; Guigard E; Kay CM; Ryan RO
    Biochemistry; 2008 Nov; 47(44):11647-52. PubMed ID: 18847225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The closed conformation of the LDL receptor is destabilized by the low Ca(++) concentration but favored by the high Mg(++) concentration in the endosome.
    Martínez-Oliván J; Arias-Moreno X; Hurtado-Guerrero R; Carrodeguas JA; Miguel-Romero L; Marina A; Bruscolini P; Sancho J
    FEBS Lett; 2015 Nov; 589(23):3534-40. PubMed ID: 26526611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat.
    Martínez-Oliván J; Arias-Moreno X; Velazquez-Campoy A; Millet O; Sancho J
    FEBS J; 2014 Mar; 281(6):1534-46. PubMed ID: 24447298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and physiologic function of the low-density lipoprotein receptor.
    Jeon H; Blacklow SC
    Annu Rev Biochem; 2005; 74():535-62. PubMed ID: 15952897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insect lipoprotein follows a transferrin-like recycling pathway that is mediated by the insect LDL receptor homologue.
    Van Hoof D; Rodenburg KW; Van der Horst DJ
    J Cell Sci; 2002 Nov; 115(Pt 21):4001-12. PubMed ID: 12356906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the LDL receptor extracellular domain at endosomal pH.
    Rudenko G; Henry L; Henderson K; Ichtchenko K; Brown MS; Goldstein JL; Deisenhofer J
    Science; 2002 Dec; 298(5602):2353-8. PubMed ID: 12459547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation.
    Pietiäinen V; Vassilev B; Blom T; Wang W; Nelson J; Bittman R; Bäck N; Zelcer N; Ikonen E
    J Cell Sci; 2013 Sep; 126(Pt 17):3961-71. PubMed ID: 23813961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorting an LDL receptor with bound PCSK9 to intracellular degradation.
    Leren TP
    Atherosclerosis; 2014 Nov; 237(1):76-81. PubMed ID: 25222343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.