These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27895559)

  • 1. Reorganization of Visual Callosal Connections Following Alterations of Retinal Input and Brain Damage.
    Restani L; Caleo M
    Front Syst Neurosci; 2016; 10():86. PubMed ID: 27895559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual callosal connections: role in visual processing in health and disease.
    Bocci T; Pietrasanta M; Cerri C; Restani L; Caleo M; Sartucci F
    Rev Neurosci; 2014; 25(1):113-27. PubMed ID: 24127537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The corpus callosum and the visual cortex: plasticity is a game for two.
    Pietrasanta M; Restani L; Caleo M
    Neural Plast; 2012; 2012():838672. PubMed ID: 22792494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual interhemispheric communication and callosal connections of the occipital lobes.
    Berlucchi G
    Cortex; 2014 Jul; 56():1-13. PubMed ID: 23489777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging.
    Chan KC; Cheng JS; Fan S; Zhou IY; Yang J; Wu EX
    Neuroimage; 2012 Feb; 59(3):2274-83. PubMed ID: 21985904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual callosal connections and strabismus.
    Milleret C
    Behav Brain Res; 1994 Oct; 64(1-2):85-95. PubMed ID: 7840895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interhemispheric Connections between the Primary Visual Cortical Areas via the Anterior Commissure in Human Callosal Agenesis.
    van Meer N; Houtman AC; Van Schuerbeek P; Vanderhasselt T; Milleret C; Ten Tusscher MP
    Front Syst Neurosci; 2016; 10():101. PubMed ID: 28082873
    [No Abstract]   [Full Text] [Related]  

  • 8. Callosal contribution to ocular dominance in rat primary visual cortex.
    Cerri C; Restani L; Caleo M
    Eur J Neurosci; 2010 Oct; 32(7):1163-9. PubMed ID: 20726891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual interhemispheric transfer to areas 17 and 18 in cats with convergent strabismus.
    Milleret C; Houzel JC
    Eur J Neurosci; 2001 Jan; 13(1):137-52. PubMed ID: 11135012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does the corpus callosum mediate interhemispheric transfer? A review.
    van der Knaap LJ; van der Ham IJ
    Behav Brain Res; 2011 Sep; 223(1):211-21. PubMed ID: 21530590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical Visual Connections via the Corpus Callosum are Asymmetrical in Human Infantile Esotropia.
    Ten Tusscher MPM; Houtman AC; De Mey J; Van Schuerbeek P
    Strabismus; 2018 Mar; 26(1):22-27. PubMed ID: 29279026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey.
    Van Essen DC; Newsome WT; Bixby JL
    J Neurosci; 1982 Mar; 2(3):265-83. PubMed ID: 7062108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of alternating monocular occlusion on the development of visual callosal connections.
    Frost DO; Moy YP; Smith DC
    Exp Brain Res; 1990; 83(1):200-9. PubMed ID: 2073939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relevance of heterotopic callosal fibers to interhemispheric connectivity of the mammalian brain.
    Szczupak D; Iack PM; RayĂȘe D; Liu C; Lent R; Tovar-Moll F; Silva AC
    Cereb Cortex; 2023 Apr; 33(8):4752-4760. PubMed ID: 36178137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetrical interhemispheric connections develop in cat visual cortex after early unilateral convergent strabismus: anatomy, physiology, and mechanisms.
    Bui Quoc E; Ribot J; Quenech'du N; Doutremer S; Lebas N; Grantyn A; Aushana Y; Milleret C
    Front Neuroanat; 2011; 5():68. PubMed ID: 22275883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular aspects of callosal connections and their development.
    Innocenti GM; Aggoun-Zouaoui D; Lehmann P
    Neuropsychologia; 1995 Aug; 33(8):961-87. PubMed ID: 8524456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual hemispheric dominance induced in split brain cats during development: a model of deficient interhemispheric transfer derived from physiological evidence in single visual cortex cells.
    Yinon U
    Behav Brain Res; 1994 Oct; 64(1-2):97-110. PubMed ID: 7840897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography of interhemispheric connections in neocortex of mice with congenital deficiencies of the callosal commissure.
    Olavarria J; Serra-Oller MM; Yee KT; Van Sluyters RC
    J Comp Neurol; 1988 Apr; 270(4):575-90. PubMed ID: 3372749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deafferented visual cortex and interhemispheric relationships: a physiological approach.
    Yinon U; Podell M
    Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):100-10. PubMed ID: 3076606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.