These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27895719)

  • 1. DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning.
    Soufan O; Ba-Alawi W; Afeef M; Essack M; Kalnis P; Bajic VB
    J Cheminform; 2016; 8():64. PubMed ID: 27895719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MF-PCBA: Multifidelity High-Throughput Screening Benchmarks for Drug Discovery and Machine Learning.
    Buterez D; Janet JP; Kiddle SJ; Liò P
    J Chem Inf Model; 2023 May; 63(9):2667-2678. PubMed ID: 37058588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining Chemical Activity Status from High-Throughput Screening Assays.
    Soufan O; Ba-alawi W; Afeef M; Essack M; Rodionov V; Kalnis P; Bajic VB
    PLoS One; 2015; 10(12):e0144426. PubMed ID: 26658480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening Assay Datasets from the PubChem Database.
    Butkiewicz M; Wang Y; Bryant SH; Lowe EW; Weaver DC; Meiler J
    Chem Inform; 2017; 3(1):. PubMed ID: 29795804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DPubChem: a web tool for QSAR modeling and high-throughput virtual screening.
    Soufan O; Ba-Alawi W; Magana-Mora A; Essack M; Bajic VB
    Sci Rep; 2018 Jun; 8(1):9110. PubMed ID: 29904147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data Mining and Computational Modeling of High-Throughput Screening Datasets.
    Ekins S; Clark AM; Dole K; Gregory K; Mcnutt AM; Spektor AC; Weatherall C; Litterman NK; Bunin BA
    Methods Mol Biol; 2018; 1755():197-221. PubMed ID: 29671272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the BioAssay Ontology for analyzing high-throughput screening data.
    Zander Balderud L; Murray D; Larsson N; Vempati U; Schürer SC; Bjäreland M; Engkvist O
    J Biomol Screen; 2015 Mar; 20(3):402-15. PubMed ID: 25512330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-to-rank technique based on ignoring meaningless ranking orders between compounds.
    Ohue M; Suzuki SD; Akiyama Y
    J Mol Graph Model; 2019 Nov; 92():192-200. PubMed ID: 31377536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing and validating predictive decision tree models from mining chemical structural fingerprints and high-throughput screening data in PubChem.
    Han L; Wang Y; Bryant SH
    BMC Bioinformatics; 2008 Sep; 9():401. PubMed ID: 18817552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for mining highly imbalanced high-throughput screening data in PubChem.
    Li Q; Wang Y; Bryant SH
    Bioinformatics; 2009 Dec; 25(24):3310-6. PubMed ID: 19825798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technological advances in high-throughput screening.
    Liu B; Li S; Hu J
    Am J Pharmacogenomics; 2004; 4(4):263-76. PubMed ID: 15287820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review.
    Shun TY; Lazo JS; Sharlow ER; Johnston PA
    J Biomol Screen; 2011 Jan; 16(1):1-14. PubMed ID: 21160066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
    White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS
    Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Analysis and In silico Predictive Modeling for Inhibitors of PhoP Regulon in S. typhi on High-Throughput Screening Bioassay Dataset.
    Kaur H; Ahmad M; Scaria V
    Interdiscip Sci; 2016 Mar; 8(1):95-101. PubMed ID: 26298582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Text-mining based PubChem Bioassay neighboring analysis.
    Han L; Suzek TO; Wang Y; Bryant SH
    BMC Bioinformatics; 2010 Nov; 11():549. PubMed ID: 21059237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico target prediction for elucidating the mode of action of herbicides including prospective validation.
    Chiddarwar RK; Rohrer SG; Wolf A; Tresch S; Wollenhaupt S; Bender A
    J Mol Graph Model; 2017 Jan; 71():70-79. PubMed ID: 27846423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty-Quantified Hybrid Machine Learning/Density Functional Theory High Throughput Screening Method for Crystals.
    Noh J; Gu GH; Kim S; Jung Y
    J Chem Inf Model; 2020 Apr; 60(4):1996-2003. PubMed ID: 32208718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.