BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27895869)

  • 1. Assessing Absorption Coefficient of Hemoglobin in the Breast Phantom Using Near-Infrared Spectroscopy.
    Mehnati P; Jafari Tirtash M; Zakerhamidi MS; Mehnati P
    Iran J Radiol; 2016 Oct; 13(4):e31581. PubMed ID: 27895869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Infrared Visual Differentiation in Normal and Abnormal Breast Using Hemoglobin Concentrations.
    Mehnati P; Khorram S; Zakerhamidi MS; Fahima F
    J Lasers Med Sci; 2018; 9(1):50-57. PubMed ID: 29399312
    [No Abstract]   [Full Text] [Related]  

  • 3. Possible Influences on the Interpretation of Functional Domain (FD) Near-Infrared Spectroscopy (NIRS): An Explorative Study.
    Celie BM; Boone J; Dumortier J; Derave W; De Backer T; Bourgois JG
    Appl Spectrosc; 2016 Feb; 70(2):363-71. PubMed ID: 26903570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue phantom-based breast cancer detection using continuous near-infrared sensor.
    Liu D; Liu X; Zhang Y; Wang Q; Lu J
    Bioengineered; 2016 Sep; 7(5):321-326. PubMed ID: 27459672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy.
    Wickramasinghe YA; Palmer KS; Houston R; Spencer SA; Rolfe P; Thorniley MS; Oeseburg B; Colier W
    Pediatr Res; 1993 Jul; 34(1):15-7. PubMed ID: 7689196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active muscle oxygenation dynamics measured during high-intensity exercise by using two near-infrared spectroscopy methods.
    Saitoh T; Ooue A; Kondo N; Niizeki K; Koga S
    Adv Exp Med Biol; 2010; 662():225-30. PubMed ID: 20204796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia.
    Ijichi S; Kusaka T; Isobe K; Islam F; Okubo K; Okada H; Namba M; Kawada K; Imai T; Itoh S
    J Biomed Opt; 2005; 10(2):024026. PubMed ID: 15910099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in hemoglobin concentration in the lateral occipital regions during shape recognition: a near-infrared spectroscopy study.
    Maehara G; Taya S; Kojima H
    J Biomed Opt; 2007; 12(6):062109. PubMed ID: 18163812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband diffuse optical spectroscopy measurement of hemoglobin concentration during hypovolemia in rabbits.
    Lee J; Saltzman DJ; Cerussi AE; Gelfand DV; Milliken J; Waddington T; Tromberg BJ; Brenner M
    Physiol Meas; 2006 Aug; 27(8):757-67. PubMed ID: 16772673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results.
    Dehghani H; Pogue BW; Poplack SP; Paulsen KD
    Appl Opt; 2003 Jan; 42(1):135-45. PubMed ID: 12518832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy.
    Sato H; Kiguchi M; Kawaguchi F; Maki A
    Neuroimage; 2004 Apr; 21(4):1554-62. PubMed ID: 15050579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemoglobin plus myoglobin concentrations and near infrared light pathlength in phantom and pig hearts determined by diffuse reflectance spectroscopy.
    Gussakovsky E; Jilkina O; Yang Y; Kupriyanov V
    Anal Biochem; 2008 Nov; 382(2):107-15. PubMed ID: 18713616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue.
    McBride TO; Pogue BW; Gerety ED; Poplack SB; Osterberg UL; Paulsen KD
    Appl Opt; 1999 Sep; 38(25):5480-90. PubMed ID: 18324057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT Role in the Assessment of Existence of Breast Cancerous Cells.
    P M; M JT; M G
    J Biomed Phys Eng; 2020 Jun; 10(3):349-356. PubMed ID: 32637379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A liver-mimicking MRI phantom for thermal ablation experiments.
    Bazrafshan B; Hübner F; Farshid P; Larson MC; Vogel V; Mäntele W; Vogl TJ
    Med Phys; 2011 May; 38(5):2674-84. PubMed ID: 21776804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer.
    Yoshizawa N; Ueda Y; Nasu H; Ogura H; Ohmae E; Yoshimoto K; Takehara Y; Yamashita Y; Sakahara H
    Breast Cancer; 2016 Nov; 23(6):844-850. PubMed ID: 26474784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial variations in optical and physiological properties of healthy breast tissue.
    Shah N; Cerussi AE; Jakubowski D; Hsiang D; Butler J; Tromberg BJ
    J Biomed Opt; 2004; 9(3):534-40. PubMed ID: 15189091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applicability of Supraclavicular Oxygenated and Total Hemoglobin Evaluated by Near-Infrared Time-Resolved Spectroscopy as Indicators of Brown Adipose Tissue Density in Humans.
    Nirengi S; Fuse S; Amagasa S; Homma T; Kime R; Kuroiwa M; Endo T; Sakane N; Matsushita M; Saito M; Kurosawa Y; Hamaoka T
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31064052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Severity-dependent and -independent brain regions of major depressive disorder: A long-term longitudinal near-infrared spectroscopy study.
    Satomura Y; Sakakibara E; Takizawa R; Koike S; Nishimura Y; Sakurada H; Yamagishi M; Shimojo C; Kawasaki S; Okada N; Matsuoka J; Kinoshita A; Jinde S; Kondo S; Kasai K
    J Affect Disord; 2019 Jan; 243():249-254. PubMed ID: 30248636
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.