BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27895927)

  • 1. Expansion, mosaicism and interruption: mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1.
    Kraus-Perrotta C; Lagalwar S
    Cerebellum Ataxias; 2016; 3():20. PubMed ID: 27895927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group.
    Pujana MA; Corral J; Gratacòs M; Combarros O; Berciano J; Genís D; Banchs I; Estivill X; Volpini V
    Hum Genet; 1999 Jun; 104(6):516-22. PubMed ID: 10453742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinocerebellar ataxia type 1.
    Zoghbi HY
    Clin Neurosci; 1995; 3(1):5-11. PubMed ID: 7614095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families.
    Brusco A; Gellera C; Cagnoli C; Saluto A; Castucci A; Michielotto C; Fetoni V; Mariotti C; Migone N; Di Donato S; Taroni F
    Arch Neurol; 2004 May; 61(5):727-33. PubMed ID: 15148151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in pathogenesis studies of spinocerebellar ataxia type 1.
    Cummings CJ; Orr HT; Zoghbi HY
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1079-81. PubMed ID: 10434309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds.
    Tang B; Liu C; Shen L; Dai H; Pan Q; Jing L; Ouyang S; Xia J
    Arch Neurol; 2000 Apr; 57(4):540-4. PubMed ID: 10768629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No association of the SCA1 (CAG)31 allele with Huntington's disease, myotonic dystrophy type 1 and spinocerebellar ataxia type 3.
    Hellenbroich Y; Kaulich M; Opitz S; Schwinger E; Zühlke C
    Psychiatr Genet; 2004 Jun; 14(2):61-3. PubMed ID: 15167689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation.
    Mangiarini L; Sathasivam K; Mahal A; Mott R; Seller M; Bates GP
    Nat Genet; 1997 Feb; 15(2):197-200. PubMed ID: 9020849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinocerebellar ataxia 7 (SCA7).
    Lebre AS; Brice A
    Cytogenet Genome Res; 2003; 100(1-4):154-63. PubMed ID: 14526176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Unstable expansion of CAG repeat and molecular mechanism of neurodegeneration in SCA1].
    Sasaki H
    Nihon Rinsho; 1999 Apr; 57(4):801-4. PubMed ID: 10222769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1.
    Chong SS; McCall AE; Cota J; Subramony SH; Orr HT; Hughes MR; Zoghbi HY
    Nat Genet; 1995 Jul; 10(3):344-50. PubMed ID: 7670474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinocerebellar ataxia type 1.
    Zoghbi HY; Orr HT
    Semin Cell Biol; 1995 Feb; 6(1):29-35. PubMed ID: 7620119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PolyQ Tract Toxicity in SCA1 is Length Dependent in the Absence of CAG Repeat Interruption.
    Nethisinghe S; Pigazzini ML; Pemble S; Sweeney MG; Labrum R; Manso K; Moore D; Warner J; Davis MB; Giunti P
    Front Cell Neurosci; 2018; 12():200. PubMed ID: 30108484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple system atrophy and CAG repeat length: A genetic screening of polyglutamine disease genes in Italian patients.
    Mongelli A; Sarro L; Rizzo E; Nanetti L; Meucci N; Pezzoli G; Goldwurm S; Taroni F; Mariotti C; Gellera C
    Neurosci Lett; 2018 Jun; 678():37-42. PubMed ID: 29715545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of Mutant Protein Expression in SCA3 and SCA1 Mice Using a CAG Repeat-Targeting Antisense Oligonucleotide.
    Kourkouta E; Weij R; González-Barriga A; Mulder M; Verheul R; Bosgra S; Groenendaal B; Puoliväli J; Toivanen J; van Deutekom JCT; Datson NA
    Mol Ther Nucleic Acids; 2019 Sep; 17():601-614. PubMed ID: 31394429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of CAT trinucleotide interruptions on the age at onset of spinocerebellar ataxia type 1 (SCA1).
    Matsuyama Z; Izumi Y; Kameyama M; Kawakami H; Nakamura S
    J Med Genet; 1999 Jul; 36(7):546-8. PubMed ID: 10424816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan.
    Kameya T; Abe K; Aoki M; Sahara M; Tobita M; Konno H; Itoyama Y
    Neurology; 1995 Aug; 45(8):1587-94. PubMed ID: 7543989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trinucleotide repeat expansion in neurological disease.
    La Spada AR; Paulson HL; Fischbeck KH
    Ann Neurol; 1994 Dec; 36(6):814-22. PubMed ID: 7998766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions.
    Landrian I; McFarland KN; Liu J; Mulligan CJ; Rasmussen A; Ashizawa T
    PLoS One; 2017; 12(4):e0175958. PubMed ID: 28423040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of interruptions in polyQ in the pathology of SCA1.
    Menon RP; Nethisinghe S; Faggiano S; Vannocci T; Rezaei H; Pemble S; Sweeney MG; Wood NW; Davis MB; Pastore A; Giunti P
    PLoS Genet; 2013; 9(7):e1003648. PubMed ID: 23935513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.