These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27895998)

  • 1. Quantifying intraocular scatter with near diffraction-limited double-pass point spread function.
    Zhao J; Xiao F; Kang J; Zhao H; Dai Y; Zhang Y
    Biomed Opt Express; 2016 Nov; 7(11):4595-4604. PubMed ID: 27895998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of higher-order aberrations and intraocular scatter on contrast sensitivity measured with a single instrument.
    Zhao J; Xiao F; Zhao H; Dai Y; Zhang Y
    Biomed Opt Express; 2017 Apr; 8(4):2138-2147. PubMed ID: 28736660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for differentiating ocular higher-order aberrations from light scatter applied to retinitis pigmentosa.
    Shahidi M; Yang Y; Rajagopalan AS; Alexander KR; Zelkha R; Fishman GA
    Optom Vis Sci; 2005 Nov; 82(11):976-80. PubMed ID: 16317374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An objective scatter index based on double-pass retinal images of a point source to classify cataracts.
    Artal P; Benito A; Pérez GM; Alcón E; De Casas A; Pujol J; Marín JM
    PLoS One; 2011 Feb; 6(2):e16823. PubMed ID: 21326868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations.
    Logean E; Dalimier E; Dainty C
    Opt Express; 2008 Oct; 16(22):17348-57. PubMed ID: 18958018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberration estimation from single point image in a simulated adaptive optics system.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3173-6. PubMed ID: 17282918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument.
    Díaz-Doutón F; Benito A; Pujol J; Arjona M; Güell JL; Artal P
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1710-6. PubMed ID: 16565413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of ocular aberrations and light scatter in healthy subjects.
    Shahidi M; Yang Y
    Optom Vis Sci; 2004 Nov; 81(11):853-7. PubMed ID: 15545811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The wide-angle point spread function of the human eye reconstructed by a new optical method.
    Ginis H; Pérez GM; Bueno JM; Artal P
    J Vis; 2012 Mar; 12(3):. PubMed ID: 22451158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase transfer and point-spread function of the human eye determined by a new asymmetric double-pass method.
    Navarro R; Losada MA
    J Opt Soc Am A Opt Image Sci Vis; 1995 Nov; 12(11):2385-92. PubMed ID: 7494153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Appl Opt; 2007 Sep; 46(25):6434-41. PubMed ID: 17805384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of the Frequency Scatter Index in Clinical Commercially Available Double-pass Systems.
    Sánchez RF; García-Guerra CE; Martínez-Roda JA; de Paul AG; Issolio LA; Pujol J
    Curr Eye Res; 2022 Mar; 47(3):391-398. PubMed ID: 34738850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical aberrations in the mouse eye.
    de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S
    Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraocular scattering compensation in retinal imaging.
    Christaras D; Ginis H; Pennos A; Artal P
    Biomed Opt Express; 2016 Oct; 7(10):3996-4006. PubMed ID: 27867710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of scatter on double-pass image quality and contrast sensitivity measured with a single instrument.
    Bueno JM; Pérez G; Benito A; Artal P
    Biomed Opt Express; 2015 Dec; 6(12):4841-9. PubMed ID: 26713198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deblurring adaptive optics retinal images using deep convolutional neural networks.
    Fei X; Zhao J; Zhao H; Yun D; Zhang Y
    Biomed Opt Express; 2017 Dec; 8(12):5675-5687. PubMed ID: 29296496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-Pass Retina Point Imaging for the Evaluation of Optical Light Scatter, Retinal Image Quality, and Staging of Keratoconus.
    Leonard AP; Gardner SD; Rocha KM; Zeldin ER; Tremblay DM; Waring GO
    J Refract Surg; 2016 Nov; 32(11):760-765. PubMed ID: 27824380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of ocular single-pass modulation transfer function and retinal image simulation from measurements of the polarized double-pass ocular point spread function.
    Kobayashi K; Shibutani M; Takeuchi G; Ohnuma K; Miyake Y; Negishi K; Ohno K; Noda T
    J Biomed Opt; 2004; 9(1):154-61. PubMed ID: 14715068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.