BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27896339)

  • 1. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water.
    Yamaguchi A; Muramatsu N; Mimura N; Shirai M; Sato O
    Phys Chem Chem Phys; 2017 Jan; 19(4):2714-2722. PubMed ID: 27896339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analyses of intramolecular dehydration of hexitols in high-temperature water.
    Yamaguchi A; Mimura N; Shirai M; Sato O
    Carbohydr Res; 2020 Jan; 487():107880. PubMed ID: 31785566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Conformational Analysis of Acyclic Sugar Alcohols Ribitol, Xylitol and d-Arabitol by Solution NMR and Molecular Dynamics Simulations.
    Ohno S; Manabe N; Uzawa J; Yamaguchi Y
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Near-Infrared Spectrometry to Evaluate the Mechanism of Wet Granulation Using a High-Speed Mixer with Porous Calcium Silicate and Sugar Alcohols.
    Hirai N; Takatani-Nakase T; Takahashi K
    Chem Pharm Bull (Tokyo); 2018; 66(11):1027-1034. PubMed ID: 30381654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of polyols in serum by selected ion monitoring.
    Roboz J; Kappatos DC; Greaves J; Holland JF
    Clin Chem; 1984 Oct; 30(10):1611-5. PubMed ID: 6434200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of pentitol metabolism in mammalian tissues provides new insight into disorders of human sugar metabolism.
    Huck JH; Roos B; Jakobs C; van der Knaap MS; Verhoeven NM
    Mol Genet Metab; 2004 Jul; 82(3):231-7. PubMed ID: 15234337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derivatives of 2,3-anhydro-DL-threitol, 2,3-anhydroerythritol, 2,3:4,5-dianhydrogalactitol, and 2,3:4,5-dianhydroallitol.
    Schneider G; Horváth T; Sohár P
    Carbohydr Res; 1977 Jun; 56(1):43-52. PubMed ID: 880588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational study of erythritol and threitol in the gas state by density functional theory calculations.
    Jesus AJ; Tomé LI; Rosado MT; Leitão ML; Redinha JS
    Carbohydr Res; 2005 Feb; 340(2):283-91. PubMed ID: 15639248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared spectra and hydrogen bonding of pentitols and pyranosides at 20 to 300 K.
    Rozenberg M; Loewenschuss A; Marcus Y
    Carbohydr Res; 2000 Sep; 328(3):307-19. PubMed ID: 11072838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of D-threitol at 119 K and 198 K.
    Jeffrey GA; Huang DB
    Carbohydr Res; 1992 Jan; 223():11-8. PubMed ID: 1596913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in biological production of sugar alcohols.
    Park YC; Oh EJ; Jo JH; Jin YS; Seo JH
    Curr Opin Biotechnol; 2016 Feb; 37():105-113. PubMed ID: 26723007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow molecular mobility in the crystalline and amorphous solid states of pentitols: a study by thermally stimulated depolarisation currents and by differential scanning calorimetry.
    Diogo HP; Pinto SS; Moura Ramos JJ
    Carbohydr Res; 2007 May; 342(7):961-9. PubMed ID: 17303096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts.
    Tathod AP; Dhepe PL
    Bioresour Technol; 2015 Feb; 178():36-44. PubMed ID: 25453932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyol dehydrogenases of Azotobacter agilis.
    MARCUS L; MARR AG
    J Bacteriol; 1961 Aug; 82(2):224-32. PubMed ID: 13766585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of novel acidic phospholipid analogs in Escherichia coli.
    Shibuya I; Yamagoe S; Miyazaki C; Matsuzaki H; Ohta A
    J Bacteriol; 1985 Feb; 161(2):473-7. PubMed ID: 3918012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Hydrogenation of Macroalgae-Derived Alginic Acid into Sugar Alcohols.
    Ban C; Jeon W; Woo HC; Kim DH
    ChemSusChem; 2017 Dec; 10(24):4891-4898. PubMed ID: 28984086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of polyols in sugar-free foodstuffs by qNMR.
    Scettri A; Schievano E
    Food Chem; 2022 Oct; 390():133125. PubMed ID: 35569397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The solvent-free thermal dehydration of tetritols on zeolites.
    Kurszewska M; Skorupa E; Kasprzykowska R; Sowiński P; Wiśniewski A
    Carbohydr Res; 2000 Jun; 326(4):241-9. PubMed ID: 10890272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial molar volumes and isentropic compressions of sugar alcohols in aqueous solutions from 15 °C to 40 °C at atmospheric pressure.
    Bernal P; Brown S; Mera M; Bouchibti Y
    Food Chem; 2019 May; 280():164-174. PubMed ID: 30642483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.