These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27896688)

  • 1. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-stride exposure to pulse torque assistance provided by a robotic exoskeleton at the hip and knee joints.
    McGrath RL; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():874-879. PubMed ID: 31374740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segment-interaction and its relevance to the control of movement during sprinting.
    Huang L; Liu Y; Wei S; Li L; Fu W; Sun Y; Feng Y
    J Biomech; 2013 Aug; 46(12):2018-23. PubMed ID: 23834897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of muscles on knee flexion during the swing phase of gait.
    Piazza SJ; Delp SL
    J Biomech; 1996 Jun; 29(6):723-33. PubMed ID: 9147969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics.
    Narang YS; Arelekatti VN; Winter AG
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):754-63. PubMed ID: 26186794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selection of a standard convention for analyzing gait data based on the analysis of relevant biomechanical factors.
    DeVita P
    J Biomech; 1994 Apr; 27(4):501-8. PubMed ID: 8188730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of interjoint coordination during the swing phase of normal gait at different speeds.
    Shemmell J; Johansson J; Portra V; Gottlieb GL; Thomas JS; Corcos DM
    J Neuroeng Rehabil; 2007 Apr; 4():10. PubMed ID: 17466065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Torque action of two-joint muscles in the swing period of stiff-legged gait: a forward dynamic model analysis.
    Riley PO; Kerrigan DC
    J Biomech; 1998 Sep; 31(9):835-40. PubMed ID: 9802784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How joint torques affect hamstring injury risk in sprinting swing-stance transition.
    Sun Y; Wei S; Zhong Y; Fu W; Li L; Liu Y
    Med Sci Sports Exerc; 2015 Feb; 47(2):373-80. PubMed ID: 24911288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of flexed knee gait and functional outcome of a patient who underwent knee reconstruction with a hingeless prosthesis for bone tumor resection: a case report with gait analysis and comparison with healthy subjects.
    Okita Y; Tatematsu N; Nagai K; Nakayama T; Nakamata T; Okamoto T; Toguchida J; Ichihashi N; Tsuboyama T
    Eur J Phys Rehabil Med; 2013 Dec; 49(6):849-55. PubMed ID: 23820881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton.
    Zhou T; Zhou Z; Zhang H; Chen W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of human gait using computed torque control.
    Unver NF; Tümer ST; Ozgören MK
    Technol Health Care; 2000; 8(1):53-66. PubMed ID: 10942991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributors of stiff knee gait pattern for able bodies: Hip and knee velocity reduction and tiptoe gait.
    Akalan NE; Kuchimov S; Apti A; Temelli Y; Nene A
    Gait Posture; 2016 Jan; 43():176-81. PubMed ID: 26481258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.