These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 27896963)

  • 1. EXPLORING BRAIN TRANSCRIPTOMIC PATTERNS: A TOPOLOGICAL ANALYSIS USING SPATIAL EXPRESSION NETWORKS.
    Kuncheva Z; Krishnan ML; Montana G
    Pac Symp Biocomput; 2017; 22():70-81. PubMed ID: 27896963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer's disease progression.
    Ray S; Hossain SMM; Khatun L; Mukhopadhyay A
    BMC Bioinformatics; 2017 Dec; 18(1):579. PubMed ID: 29262769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative analysis of regional gene expression profiles in the human brain.
    Myers EM; Bartlett CW; Machiraju R; Bohland JW
    Methods; 2015 Feb; 73():54-70. PubMed ID: 25524419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discover mouse gene coexpression landscapes using dictionary learning and sparse coding.
    Li Y; Chen H; Jiang X; Li X; Lv J; Peng H; Tsien JZ; Liu T
    Brain Struct Funct; 2017 Dec; 222(9):4253-4270. PubMed ID: 28664394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy.
    Bohland JW; Bokil H; Pathak SD; Lee CK; Ng L; Lau C; Kuan C; Hawrylycz M; Mitra PP
    Methods; 2010 Feb; 50(2):105-12. PubMed ID: 19733241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated gene expression pattern annotation in the mouse brain.
    Yang T; Zhao X; Lin B; Zeng T; Ji S; Ye J
    Pac Symp Biocomput; 2015; 20():144-55. PubMed ID: 25592576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential gene regulatory pattern in the human brain from schizophrenia using transcriptomic-causal network.
    Yazdani A; Mendez-Giraldez R; Yazdani A; Kosorok MR; Roussos P
    BMC Bioinformatics; 2020 Oct; 21(1):469. PubMed ID: 33087039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global gene expression profiling of healthy human brain and its application in studying neurological disorders.
    Negi SK; Guda C
    Sci Rep; 2017 Apr; 7(1):897. PubMed ID: 28420888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular reorganization of the global network of gene regulatory interactions during perinatal human brain development.
    Monzón-Sandoval J; Castillo-Morales A; Urrutia AO; Gutierrez H
    BMC Dev Biol; 2016 May; 16():13. PubMed ID: 27175727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain.
    Okamura-Oho Y; Shimokawa K; Nishimura M; Takemoto S; Sato A; Furuichi T; Yokota H
    Sci Rep; 2014 Nov; 4():6969. PubMed ID: 25382412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas.
    Liu Z; Yan SF; Walker JR; Zwingman TA; Jiang T; Li J; Zhou Y
    BMC Syst Biol; 2007 Apr; 1():19. PubMed ID: 17437647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.
    Chou SJ; Wang C; Sintupisut N; Niou ZX; Lin CH; Li KC; Yeang CH
    Sci Rep; 2016 Jan; 6():19274. PubMed ID: 26786896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic and co-expression network-based analyses associated with nitrate response in rice.
    Coneva V; Simopoulos C; Casaretto JA; El-Kereamy A; Guevara DR; Cohn J; Zhu T; Guo L; Alexander DC; Bi YM; McNicholas PD; Rothstein SJ
    BMC Genomics; 2014 Dec; 15(1):1056. PubMed ID: 25471115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shared Pathways Among Autism Candidate Genes Determined by Co-expression Network Analysis of the Developing Human Brain Transcriptome.
    Mahfouz A; Ziats MN; Rennert OM; Lelieveldt BP; Reinders MJ
    J Mol Neurosci; 2015 Dec; 57(4):580-94. PubMed ID: 26399424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic image analysis for gene expression patterns of fly embryos.
    Peng H; Long F; Zhou J; Leung G; Eisen MB; Myers EW
    BMC Cell Biol; 2007 Jul; 8 Suppl 1(Suppl 1):S7. PubMed ID: 17634097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA transcriptome profiling of mice brains infected with Japanese encephalitis virus by RNA sequencing.
    Li XF; Cao RB; Luo J; Fan JM; Wang JM; Zhang YP; Gu JY; Feng XL; Zhou B; Chen PY
    Infect Genet Evol; 2016 Apr; 39():249-257. PubMed ID: 26845346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional organization of the transcriptome in human brain.
    Oldham MC; Konopka G; Iwamoto K; Langfelder P; Kato T; Horvath S; Geschwind DH
    Nat Neurosci; 2008 Nov; 11(11):1271-82. PubMed ID: 18849986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guidance for RNA-seq co-expression network construction and analysis: safety in numbers.
    Ballouz S; Verleyen W; Gillis J
    Bioinformatics; 2015 Jul; 31(13):2123-30. PubMed ID: 25717192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of co-expression measures: mutual information, correlation, and model based indices.
    Song L; Langfelder P; Horvath S
    BMC Bioinformatics; 2012 Dec; 13():328. PubMed ID: 23217028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A practical guide to linking brain-wide gene expression and neuroimaging data.
    Arnatkeviciute A; Fulcher BD; Fornito A
    Neuroimage; 2019 Apr; 189():353-367. PubMed ID: 30648605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.