These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 27896980)
1. DEEP MOTIF DASHBOARD: VISUALIZING AND UNDERSTANDING GENOMIC SEQUENCES USING DEEP NEURAL NETWORKS. Lanchantin J; Singh R; Wang B; Qi Y Pac Symp Biocomput; 2017; 22():254-265. PubMed ID: 27896980 [TBL] [Abstract][Full Text] [Related]
2. Predicting enhancers with deep convolutional neural networks. Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068 [TBL] [Abstract][Full Text] [Related]
3. Representation learning of genomic sequence motifs with convolutional neural networks. Koo PK; Eddy SR PLoS Comput Biol; 2019 Dec; 15(12):e1007560. PubMed ID: 31856220 [TBL] [Abstract][Full Text] [Related]
4. Visualizing complex feature interactions and feature sharing in genomic deep neural networks. Liu G; Zeng H; Gifford DK BMC Bioinformatics; 2019 Jul; 20(1):401. PubMed ID: 31324140 [TBL] [Abstract][Full Text] [Related]
5. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187 [TBL] [Abstract][Full Text] [Related]
6. Prediction of TF-Binding Site by Inclusion of Higher Order Position Dependencies. Zhou J; Lu Q; Xu R; Gui L; Wang H IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1383-1393. PubMed ID: 30629513 [TBL] [Abstract][Full Text] [Related]
8. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning. Wang K; Zeng X; Zhou J; Liu F; Luan X; Wang X Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701417 [TBL] [Abstract][Full Text] [Related]
12. SpliceRover: interpretable convolutional neural networks for improved splice site prediction. Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149 [TBL] [Abstract][Full Text] [Related]
13. Global importance analysis: An interpretability method to quantify importance of genomic features in deep neural networks. Koo PK; Majdandzic A; Ploenzke M; Anand P; Paul SB PLoS Comput Biol; 2021 May; 17(5):e1008925. PubMed ID: 33983921 [TBL] [Abstract][Full Text] [Related]
15. Object class segmentation of RGB-D video using recurrent convolutional neural networks. Pavel MS; Schulz H; Behnke S Neural Netw; 2017 Apr; 88():105-113. PubMed ID: 28232260 [TBL] [Abstract][Full Text] [Related]
16. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences. Greenside P; Shimko T; Fordyce P; Kundaje A Bioinformatics; 2018 Sep; 34(17):i629-i637. PubMed ID: 30423062 [TBL] [Abstract][Full Text] [Related]
17. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences. Li H; Gong XJ; Yu H; Zhou C Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670 [TBL] [Abstract][Full Text] [Related]
18. A deep neural network approach for learning intrinsic protein-RNA binding preferences. Ben-Bassat I; Chor B; Orenstein Y Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078 [TBL] [Abstract][Full Text] [Related]
19. Learning and interpreting the gene regulatory grammar in a deep learning framework. Chen L; Capra JA PLoS Comput Biol; 2020 Nov; 16(11):e1008334. PubMed ID: 33137083 [TBL] [Abstract][Full Text] [Related]