BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27896980)

  • 1. DEEP MOTIF DASHBOARD: VISUALIZING AND UNDERSTANDING GENOMIC SEQUENCES USING DEEP NEURAL NETWORKS.
    Lanchantin J; Singh R; Wang B; Qi Y
    Pac Symp Biocomput; 2017; 22():254-265. PubMed ID: 27896980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting enhancers with deep convolutional neural networks.
    Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation learning of genomic sequence motifs with convolutional neural networks.
    Koo PK; Eddy SR
    PLoS Comput Biol; 2019 Dec; 15(12):e1007560. PubMed ID: 31856220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing complex feature interactions and feature sharing in genomic deep neural networks.
    Liu G; Zeng H; Gifford DK
    BMC Bioinformatics; 2019 Jul; 20(1):401. PubMed ID: 31324140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of TF-Binding Site by Inclusion of Higher Order Position Dependencies.
    Zhou J; Lu Q; Xu R; Gui L; Wang H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1383-1393. PubMed ID: 30629513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Order Convolutional Neural Network Architecture for Predicting DNA-Protein Binding Sites.
    Zhang Q; Zhu L; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1184-1192. PubMed ID: 29993783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning.
    Wang K; Zeng X; Zhou J; Liu F; Luan X; Wang X
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent Neural Network for Predicting Transcription Factor Binding Sites.
    Shen Z; Bao W; Huang DS
    Sci Rep; 2018 Oct; 8(1):15270. PubMed ID: 30323198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of deep learning approaches for modeling transcription factor sequence specificity.
    Zhang Y; Mo Q; Xue L; Luo J
    Genomics; 2021 Nov; 113(6):3774-3781. PubMed ID: 34534646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolutional neural network architectures for predicting DNA-protein binding.
    Zeng H; Edwards MD; Liu G; Gifford DK
    Bioinformatics; 2016 Jun; 32(12):i121-i127. PubMed ID: 27307608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global importance analysis: An interpretability method to quantify importance of genomic features in deep neural networks.
    Koo PK; Majdandzic A; Ploenzke M; Anand P; Paul SB
    PLoS Comput Biol; 2021 May; 17(5):e1008925. PubMed ID: 33983921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensemble Neural Networks (ENN): A gradient-free stochastic method.
    Chen Y; Chang H; Meng J; Zhang D
    Neural Netw; 2019 Feb; 110():170-185. PubMed ID: 30562650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Object class segmentation of RGB-D video using recurrent convolutional neural networks.
    Pavel MS; Schulz H; Behnke S
    Neural Netw; 2017 Apr; 88():105-113. PubMed ID: 28232260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences.
    Greenside P; Shimko T; Fordyce P; Kundaje A
    Bioinformatics; 2018 Sep; 34(17):i629-i637. PubMed ID: 30423062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences.
    Li H; Gong XJ; Yu H; Zhou C
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning and interpreting the gene regulatory grammar in a deep learning framework.
    Chen L; Capra JA
    PLoS Comput Biol; 2020 Nov; 16(11):e1008334. PubMed ID: 33137083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Convolutional Neural Networks for large-scale speech tasks.
    Sainath TN; Kingsbury B; Saon G; Soltau H; Mohamed AR; Dahl G; Ramabhadran B
    Neural Netw; 2015 Apr; 64():39-48. PubMed ID: 25439765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.