These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27896993)

  • 1. FREQUENT SUBGRAPH MINING OF PERSONALIZED SIGNALING PATHWAY NETWORKS GROUPS PATIENTS WITH FREQUENTLY DYSREGULATED DISEASE PATHWAYS AND PREDICTS PROGNOSIS.
    Durmaz A; Henderson TAD; Brubaker D; Bebek G
    Pac Symp Biocomput; 2017; 22():402-413. PubMed ID: 27896993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequent Subgraph Mining of Functional Interaction Patterns Across Multiple Cancers.
    Durmaz A; Henderson TAD; Bebek G
    Pac Symp Biocomput; 2021; 26():261-272. PubMed ID: 33691023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining patterns in disease classification forests.
    Hu H
    J Biomed Inform; 2010 Oct; 43(5):820-7. PubMed ID: 20601123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MICRORNA-AUGMENTED PATHWAYS (mirAP) AND THEIR APPLICATIONS TO PATHWAY ANALYSIS AND DISEASE SUBTYPING.
    Diaz D; Donato M; Nguyen T; Draghici S
    Pac Symp Biocomput; 2017; 22():390-401. PubMed ID: 27896992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering.
    Ahmad A; Fröhlich H
    Bioinformatics; 2017 Nov; 33(22):3558-3566. PubMed ID: 28961917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.
    Young JD; Cai C; Lu X
    BMC Bioinformatics; 2017 Oct; 18(Suppl 11):381. PubMed ID: 28984190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic comparison of data- and knowledge-driven approaches to disease subtype discovery.
    Rintala TJ; Federico A; Latonen L; Greco D; Fortino V
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34396389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse.
    Nguyen T; Lee SC; Quinn TP; Truong B; Li X; Tran T; Venkatesh S; Le TD
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2841-2847. PubMed ID: 33909569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms.
    Sørlie T; Wang Y; Xiao C; Johnsen H; Naume B; Samaha RR; Børresen-Dale AL
    BMC Genomics; 2006 May; 7():127. PubMed ID: 16729877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BreastMark: an integrated approach to mining publicly available transcriptomic datasets relating to breast cancer outcome.
    Madden SF; Clarke C; Gaule P; Aherne ST; O'Donovan N; Clynes M; Crown J; Gallagher WM
    Breast Cancer Res; 2013; 15(4):R52. PubMed ID: 23820017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying cancer biomarkers by network-constrained support vector machines.
    Chen L; Xuan J; Riggins RB; Clarke R; Wang Y
    BMC Syst Biol; 2011 Oct; 5():161. PubMed ID: 21992556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpreting personal transcriptomes: personalized mechanism-scale profiling of RNA-seq data.
    Perez-Rathke A; Li H; Lussier YA
    Pac Symp Biocomput; 2013; ():159-70. PubMed ID: 23424121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive tissue-specific gene set enrichment analysis and transcription factor analysis of breast cancer by integrating 14 gene expression datasets.
    Li WX; He K; Tang L; Dai SX; Li GH; Lv WW; Guo YC; An SQ; Wu GY; Liu D; Huang JF
    Oncotarget; 2017 Jan; 8(4):6775-6786. PubMed ID: 28036274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature.
    Syafruddin SE; Nazarie WFWM; Moidu NA; Soon BH; Mohtar MA
    BMC Cancer; 2021 Jul; 21(1):850. PubMed ID: 34301218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups.
    Netanely D; Avraham A; Ben-Baruch A; Evron E; Shamir R
    Breast Cancer Res; 2016 Jul; 18(1):74. PubMed ID: 27386846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applied graph-mining algorithms to study biomolecular interaction networks.
    Shen R; Guda C
    Biomed Res Int; 2014; 2014():439476. PubMed ID: 24800226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classifying tumors by supervised network propagation.
    Zhang W; Ma J; Ideker T
    Bioinformatics; 2018 Jul; 34(13):i484-i493. PubMed ID: 29949979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.