These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 27896997)
21. Separation of samples into their constituents using gene expression data. Venet D; Pecasse F; Maenhaut C; Bersini H Bioinformatics; 2001; 17 Suppl 1():S279-87. PubMed ID: 11473019 [TBL] [Abstract][Full Text] [Related]
22. Relating gene expression data on two-component systems to functional annotations in Escherichia coli. Denton AM; Wu J; Townsend MK; Sule P; Prüss BM BMC Bioinformatics; 2008 Jun; 9():294. PubMed ID: 18578884 [TBL] [Abstract][Full Text] [Related]
23. Univariate shrinkage in the cox model for high dimensional data. Tibshirani RJ Stat Appl Genet Mol Biol; 2009; 8(1):Article21. PubMed ID: 19409065 [TBL] [Abstract][Full Text] [Related]
24. SMaSH: a scalable, general marker gene identification framework for single-cell RNA-sequencing. Nelson ME; Riva SG; Cvejic A BMC Bioinformatics; 2022 Aug; 23(1):328. PubMed ID: 35941549 [TBL] [Abstract][Full Text] [Related]
25. Genome-wide matching of genes to cellular roles using guilt-by-association models derived from single sample analysis. Klomp JA; Furge KA BMC Res Notes; 2012 Jul; 5():370. PubMed ID: 22824328 [TBL] [Abstract][Full Text] [Related]
27. An integrated approach for genome-wide gene expression analysis. Hu YJ Comput Methods Programs Biomed; 2001 Jun; 65(3):163-74. PubMed ID: 11339978 [TBL] [Abstract][Full Text] [Related]
28. Capturing changes in gene expression dynamics by gene set differential coordination analysis. Yu T; Bai Y Genomics; 2011 Dec; 98(6):469-77. PubMed ID: 21971296 [TBL] [Abstract][Full Text] [Related]
29. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. Reiss DJ; Baliga NS; Bonneau R BMC Bioinformatics; 2006 Jun; 7():280. PubMed ID: 16749936 [TBL] [Abstract][Full Text] [Related]
30. Adjustments and measures of differential expression for microarray data. Tsodikov A; Szabo A; Jones D Bioinformatics; 2002 Feb; 18(2):251-60. PubMed ID: 11847073 [TBL] [Abstract][Full Text] [Related]
31. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data. Tintle NL; Sitarik A; Boerema B; Young K; Best AA; Dejongh M BMC Bioinformatics; 2012 Aug; 13():193. PubMed ID: 22873695 [TBL] [Abstract][Full Text] [Related]
32. Meta-analysis approaches to combine multiple gene set enrichment studies. Lu W; Wang X; Zhan X; Gazdar A Stat Med; 2018 Feb; 37(4):659-672. PubMed ID: 29052247 [TBL] [Abstract][Full Text] [Related]
33. Unsupervised gene set testing based on random matrix theory. Frost HR; Amos CI BMC Bioinformatics; 2016 Nov; 17(1):442. PubMed ID: 27809777 [TBL] [Abstract][Full Text] [Related]
34. Reconciling gene expression data with known genome-scale regulatory network structures. Herrgård MJ; Covert MW; Palsson BØ Genome Res; 2003 Nov; 13(11):2423-34. PubMed ID: 14559784 [TBL] [Abstract][Full Text] [Related]
35. The effects of normalization on the correlation structure of microarray data. Qiu X; Brooks AI; Klebanov L; Yakovlev N BMC Bioinformatics; 2005 May; 6():120. PubMed ID: 15904488 [TBL] [Abstract][Full Text] [Related]
36. Pathway-based approaches for sequencing-based genome-wide association studies. Wu G; Zhi D Genet Epidemiol; 2013 Jul; 37(5):478-94. PubMed ID: 23650134 [TBL] [Abstract][Full Text] [Related]
37. Gene set analyses for interpreting microarray experiments on prokaryotic organisms. Tintle NL; Best AA; DeJongh M; Van Bruggen D; Heffron F; Porwollik S; Taylor RC BMC Bioinformatics; 2008 Nov; 9():469. PubMed ID: 18986519 [TBL] [Abstract][Full Text] [Related]