BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27897180)

  • 1. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.
    Jobst J; van der Torren AJH; Krasovskii EE; Balgley J; Dean CR; Tromp RM; van der Molen SJ
    Nat Commun; 2016 Nov; 7():13621. PubMed ID: 27897180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of Interfacial Polarons from Electron-Phonon Coupling in Graphene/h-BN van der Waals Heterostructures.
    Chen C; Avila J; Wang S; Wang Y; Mucha-Kruczyński M; Shen C; Yang R; Nosarzewski B; Devereaux TP; Zhang G; Asensio MC
    Nano Lett; 2018 Feb; 18(2):1082-1087. PubMed ID: 29302973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.
    Cao Y; Fatemi V; Demir A; Fang S; Tomarken SL; Luo JY; Sanchez-Yamagishi JD; Watanabe K; Taniguchi T; Kaxiras E; Ashoori RC; Jarillo-Herrero P
    Nature; 2018 Apr; 556(7699):80-84. PubMed ID: 29512654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoresponse of Natural van der Waals Heterostructures.
    Ray K; Yore AE; Mou T; Jha S; Smithe KKH; Wang B; Pop E; Newaz AKM
    ACS Nano; 2017 Jun; 11(6):6024-6030. PubMed ID: 28485958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of band gaps in graphene on hexagonal boron nitride.
    Jung J; DaSilva AM; MacDonald AH; Adam S
    Nat Commun; 2015 Feb; 6():6308. PubMed ID: 25695638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced doping in heterostructures of graphene and boron nitride.
    Ju L; Velasco J; Huang E; Kahn S; Nosiglia C; Tsai HZ; Yang W; Taniguchi T; Watanabe K; Zhang Y; Zhang G; Crommie M; Zettl A; Wang F
    Nat Nanotechnol; 2014 May; 9(5):348-52. PubMed ID: 24727687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy.
    Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J
    Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotope engineering of van der Waals interactions in hexagonal boron nitride.
    Vuong TQP; Liu S; Van der Lee A; Cuscó R; Artús L; Michel T; Valvin P; Edgar JH; Cassabois G; Gil B
    Nat Mater; 2018 Feb; 17(2):152-158. PubMed ID: 29251722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Iwasaki T; Endo K; Watanabe E; Tsuya D; Morita Y; Nakaharai S; Noguchi Y; Wakayama Y; Watanabe K; Taniguchi T; Moriyama S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8533-8538. PubMed ID: 32027115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hot pick-up technique for batch assembly of van der Waals heterostructures.
    Pizzocchero F; Gammelgaard L; Jessen BS; Caridad JM; Wang L; Hone J; Bøggild P; Booth TJ
    Nat Commun; 2016 Jun; 7():11894. PubMed ID: 27305833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene's Partial Transparency to van der Waals and Electrostatic Interactions.
    Ghoshal D; Jain R; Koratkar NA
    Langmuir; 2019 Sep; 35(38):12306-12316. PubMed ID: 31474110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ manipulation of van der Waals heterostructures for twistronics.
    Yang Y; Li J; Yin J; Xu S; Mullan C; Taniguchi T; Watanabe K; Geim AK; Novoselov KS; Mishchenko A
    Sci Adv; 2020 Dec; 6(49):. PubMed ID: 33277256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificially stacked atomic layers: toward new van der Waals solids.
    Gao G; Gao W; Cannuccia E; Taha-Tijerina J; Balicas L; Mathkar A; Narayanan TN; Liu Z; Gupta BK; Peng J; Yin Y; Rubio A; Ajayan PM
    Nano Lett; 2012 Jul; 12(7):3518-25. PubMed ID: 22731861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.
    Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S
    ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Properties of h-BCN-Blue Phosphorene van der Waals Heterostructures.
    Kaewmaraya T; Srepusharawoot P; Hussian T; Amornkitbamrung V
    Chemphyschem; 2018 Mar; 19(5):612-618. PubMed ID: 29210157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme.
    Sattar A; Moazzam U; Bashir AI; Reza A; Latif H; Usman A; Amjad RJ; Mubshrah A; Nasir A
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33601353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Electrochemical Intercalation of Graphene/h-BN van der Waals Heterostructures.
    Zhao SYF; Elbaz GA; Bediako DK; Yu C; Efetov DK; Guo Y; Ravichandran J; Min KA; Hong S; Taniguchi T; Watanabe K; Brus LE; Roy X; Kim P
    Nano Lett; 2018 Jan; 18(1):460-466. PubMed ID: 29268017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures.
    Chen ZG; Shi Z; Yang W; Lu X; Lai Y; Yan H; Wang F; Zhang G; Li Z
    Nat Commun; 2014 Jul; 5():4461. PubMed ID: 25034319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.
    Guo H; Liu Y; Xu Y; Meng N; Wang H; Hasan T; Wang X; Luo J; Yu B
    Nanotechnology; 2014 Sep; 25(35):355202. PubMed ID: 25116064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.