These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 27897195)
1. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Myrovali E; Maniotis N; Makridis A; Terzopoulou A; Ntomprougkidis V; Simeonidis K; Sakellari D; Kalogirou O; Samaras T; Salikhov R; Spasova M; Farle M; Wiedwald U; Angelakeris M Sci Rep; 2016 Nov; 6():37934. PubMed ID: 27897195 [TBL] [Abstract][Full Text] [Related]
2. Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. Larumbe S; Gómez-Polo C; Pérez-Landazábal JI; Pastor JM J Phys Condens Matter; 2012 Jul; 24(26):266007. PubMed ID: 22700683 [TBL] [Abstract][Full Text] [Related]
3. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications. Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092 [TBL] [Abstract][Full Text] [Related]
4. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Branquinho LC; Carrião MS; Costa AS; Zufelato N; Sousa MH; Miotto R; Ivkov R; Bakuzis AF Sci Rep; 2013 Oct; 3():2887. PubMed ID: 24096272 [TBL] [Abstract][Full Text] [Related]
5. The formation of linear aggregates in magnetic hyperthermia: implications on specific absorption rate and magnetic anisotropy. Saville SL; Qi B; Baker J; Stone R; Camley RE; Livesey KL; Ye L; Crawford TM; Mefford OT J Colloid Interface Sci; 2014 Jun; 424():141-51. PubMed ID: 24767510 [TBL] [Abstract][Full Text] [Related]
6. Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia. Campanini M; Ciprian R; Bedogni E; Mega A; Chiesi V; Casoli F; de Julián Fernández C; Rotunno E; Rossi F; Secchi A; Bigi F; Salviati G; Magén C; Grillo V; Albertini F Nanoscale; 2015 May; 7(17):7717-25. PubMed ID: 25835488 [TBL] [Abstract][Full Text] [Related]
7. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals. Faure B; Wetterskog E; Gunnarsson K; Josten E; Hermann RP; Brückel T; Andreasen JW; Meneau F; Meyer M; Lyubartsev A; Bergström L; Salazar-Alvarez G; Svedlindh P Nanoscale; 2013 Feb; 5(3):953-60. PubMed ID: 23238262 [TBL] [Abstract][Full Text] [Related]
8. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Tao C; Zhu Y Dalton Trans; 2014 Nov; 43(41):15482-90. PubMed ID: 25190592 [TBL] [Abstract][Full Text] [Related]
9. Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Soares PI; Machado D; Laia C; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP Carbohydr Polym; 2016 Sep; 149():382-90. PubMed ID: 27261762 [TBL] [Abstract][Full Text] [Related]
10. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Martinez-Boubeta C; Simeonidis K; Makridis A; Angelakeris M; Iglesias O; Guardia P; Cabot A; Yedra L; Estradé S; Peiró F; Saghi Z; Midgley PA; Conde-Leborán I; Serantes D; Baldomir D Sci Rep; 2013; 3():1652. PubMed ID: 23576006 [TBL] [Abstract][Full Text] [Related]
12. Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths. Narayanaswamy V; Sambasivam S; Saj A; Alaabed S; Issa B; Al-Omari IA; Obaidat IM Molecules; 2021 Feb; 26(4):. PubMed ID: 33557107 [TBL] [Abstract][Full Text] [Related]
13. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles. Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262 [TBL] [Abstract][Full Text] [Related]
14. Magneto-induced anisotropy in magnetic colloids of superparamagnetic magnetite nanoparticles in an external magnetic field. Kredentser SV; Kulyk MM; Kalita VM; Slyusarenko KY; Reshetnyak VY; Reznikov YA Soft Matter; 2017 Jun; 13(22):4080-4087. PubMed ID: 28537321 [TBL] [Abstract][Full Text] [Related]
15. Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles. Rácz J; de Châtel PF; Szabó IA; Szunyogh L; Nándori I Phys Rev E; 2016 Jan; 93(1):012607. PubMed ID: 26871122 [TBL] [Abstract][Full Text] [Related]
16. Tailoring Mg(x)Mn(1-x)Fe(2)O(4) superparamagnetic nanoferrites for magnetic fluid hyperthermia applications. Jeun M; Park S; Jang GH; Lee KH ACS Appl Mater Interfaces; 2014 Oct; 6(19):16487-92. PubMed ID: 25238143 [TBL] [Abstract][Full Text] [Related]
17. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393 [TBL] [Abstract][Full Text] [Related]
18. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263 [TBL] [Abstract][Full Text] [Related]
19. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators. Sakellari D; Brintakis K; Kostopoulou A; Myrovali E; Simeonidis K; Lappas A; Angelakeris M Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():187-93. PubMed ID: 26478302 [TBL] [Abstract][Full Text] [Related]
20. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Shi D; Sadat ME; Dunn AW; Mast DB Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]