These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27897221)

  • 1. Plasmonic metalens based on coupled resonators for focusing of surface plasmons.
    Xu Q; Zhang X; Xu Y; Li Q; Li Y; Ouyang C; Tian Z; Gu J; Zhang W; Zhang X; Han J; Zhang W
    Sci Rep; 2016 Nov; 6():37861. PubMed ID: 27897221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric excitation of surface plasmons by dark mode coupling.
    Zhang X; Xu Q; Li Q; Xu Y; Gu J; Tian Z; Ouyang C; Liu Y; Zhang S; Zhang X; Han J; Zhang W
    Sci Adv; 2016 Feb; 2(2):e1501142. PubMed ID: 26989777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bandpass Filter Integrated Metalens Based on Electromagnetically Induced Transparency.
    Shan D; Gao J; Xu N; Liu H; Song N; Sun Q; Zhao Y; Tang Y; Wang Y; Feng X; Chen X
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable metalensing based on plasmonic resonators embedded on thermosresponsive hydrogel.
    Ullah N; Khalid AUR; Ahmed S; Iqbal S; Khan MI; Rehman MU; Mehmood A; Hu B; Tian X
    Opt Express; 2023 Apr; 31(8):12789-12801. PubMed ID: 37157432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
    Han Z; Bozhevolnyi SI
    Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.
    Chen J; Wang P; Chen C; Lu Y; Ming H; Zhan Q
    Opt Express; 2011 Mar; 19(7):5970-8. PubMed ID: 21451622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators.
    Li Q; Liu S; Zhang X; Wang S; Chen T
    Opt Express; 2020 Mar; 28(6):8792-8801. PubMed ID: 32225497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide.
    Zhang B; Sun Y; Xu Y; Hu G; Zeng P; Gao M; Xia D; Huang Y; Li Z
    Opt Lett; 2021 Jun; 46(12):2828-2831. PubMed ID: 34129551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene.
    Shi X; Han D; Dai Y; Yu Z; Sun Y; Chen H; Liu X; Zi J
    Opt Express; 2013 Nov; 21(23):28438-43. PubMed ID: 24514355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens.
    Venugopalan P; Zhang Q; Li X; Kuipers L; Gu M
    Opt Lett; 2014 Oct; 39(19):5744-7. PubMed ID: 25360974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double plasmonic nanodisks design for electromagnetically induced transparency and slow light.
    Lai G; Liang R; Zhang Y; Bian Z; Yi L; Zhan G; Zhao R
    Opt Express; 2015 Mar; 23(5):6554-61. PubMed ID: 25836873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Nonlinear Optical Activity Induced by Lattice Surface Modes on Plasmonic Metasurface.
    Chen S; Reineke B; Li G; Zentgraf T; Zhang S
    Nano Lett; 2019 Sep; 19(9):6278-6283. PubMed ID: 31419138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency.
    Lu H; Liu X; Wang G; Mao D
    Nanotechnology; 2012 Nov; 23(44):444003. PubMed ID: 23079958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system.
    He LY; Wang TJ; Gao YP; Cao C; Wang C
    Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically Tunable Bifocal Metalens with Diffraction-Limited Focusing and Imaging at Visible Wavelengths.
    Badloe T; Kim I; Kim Y; Kim J; Rho J
    Adv Sci (Weinh); 2021 Nov; 8(21):e2102646. PubMed ID: 34486242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A broadband achromatic metalens for focusing and imaging in the visible.
    Chen WT; Zhu AY; Sanjeev V; Khorasaninejad M; Shi Z; Lee E; Capasso F
    Nat Nanotechnol; 2018 Mar; 13(3):220-226. PubMed ID: 29292382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.
    Guo Y; Yan L; Pan W; Luo B; Wen K; Guo Z; Luo X
    Opt Express; 2012 Oct; 20(22):24348-55. PubMed ID: 23187197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.