These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27897230)

  • 1. Scaling Effect of Phosphorene Nanoribbon - Uncovering the Origin of Asymmetric Current Transport.
    Lv Y; Chang S; Huang Q; Wang H; He J
    Sci Rep; 2016 Nov; 6():38009. PubMed ID: 27897230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust charge spatial separation and linearly tunable band gap of low-energy tube-edge phosphorene nanoribbon.
    Xia M; Liu H; Wang L; Li S; Gao J; Su Y; Zhao J
    Nanoscale Adv; 2021 Jul; 3(15):4416-4423. PubMed ID: 36133464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bandgap scaling and negative differential resistance behavior of zigzag phosphorene antidot nanoribbons (ZPANRs).
    Carmel S; Pon A; Meenakshisundaram N; Ramesh R; Bhattacharyya A
    Phys Chem Chem Phys; 2018 May; 20(21):14855-14863. PubMed ID: 29781502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and transport properties of zigzag phosphorene nanoribbons with nonmetallic atom terminations.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2020 Jan; 10(3):1400-1409. PubMed ID: 35494722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.
    Hu W; Lin L; Zhang R; Yang C; Yang J
    J Am Chem Soc; 2017 Nov; 139(43):15429-15436. PubMed ID: 29027456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Even-odd effect of spin-dependent transport and thermoelectric properties for ferromagnetic zigzag phosphorene nanoribbons under an electric field.
    Zhou B; Yuan J; Zhou X; Zhou B
    J Phys Condens Matter; 2020 Aug; 32(43):. PubMed ID: 32668426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons.
    Han X; Stewart HM; Shevlin SA; Catlow CR; Guo ZX
    Nano Lett; 2014 Aug; 14(8):4607-14. PubMed ID: 24992160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure and elastic properties of phosphorene edges.
    Sorkin V; Zhang YW
    Nanotechnology; 2015 Jun; 26(23):235707. PubMed ID: 25994387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical study on strain tunable electronic structure and optical transitions in armchair black phosphorene nanoribbons.
    Liu P; Zhou X; Xiao X; Zhou B; Zhou G
    J Phys Condens Matter; 2020 Jul; 32(28):285301. PubMed ID: 32150733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor.
    Asadpour M; Jafari M; Asadpour M; Jafari M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():380-4. PubMed ID: 25576934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bandstructure and Size-Scaling Effects in the Performance of Monolayer Black Phosphorus Nanodevices.
    Poljak M; Matić M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain engineering on transmission carriers of monolayer phosphorene.
    Zhang W; Li F; Hu J; Zhang P; Yin J; Tang X; Jiang Y; Wu B; Ding Y
    J Phys Condens Matter; 2017 Nov; 29(46):465501. PubMed ID: 28937360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band.
    Du Y; Liu H; Xu B; Sheng L; Yin J; Duan CG; Wan X
    Sci Rep; 2015 Mar; 5():8921. PubMed ID: 25747727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic properties of phosphorene nanoribbons with nanoholes.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2018 Feb; 8(14):7486-7493. PubMed ID: 35539136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of Magnetic State in Armchair Black Phosphorene Nanoribbon by Charge Doping.
    Farooq MU; Hashmi A; Hong J
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14423-30. PubMed ID: 26076899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots.
    Saleem Y; Najera Baldo L; Delgado A; Szulakowska L; Hawrylak P
    J Phys Condens Matter; 2019 Jul; 31(30):305503. PubMed ID: 30812024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A first-principles study on zigzag phosphorene nanoribbons passivated by iron-group atoms.
    Chen N; Wang Y; Mu Y; Fan Y; Li SD
    Phys Chem Chem Phys; 2017 Sep; 19(37):25441-25445. PubMed ID: 28900647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons.
    Kaur S; Kumar A; Srivastava S; Pandey R; Tankeshwar K
    Nanotechnology; 2018 Apr; 29(15):155701. PubMed ID: 29388562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower Limits of Contact Resistance in Phosphorene Nanodevices with Edge Contacts.
    Poljak M; Matić M; Župančić T; Zeljko A
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.