BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 27897317)

  • 1. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.
    Chen G; Das S
    Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S
    Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.
    Li H; Chen G; Das S
    Colloids Surf B Biointerfaces; 2016 Nov; 147():180-190. PubMed ID: 27543690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous Shrinking-Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects.
    Chen G; Das S
    J Phys Chem B; 2016 Jul; 120(27):6848-57. PubMed ID: 27322913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel.
    Pial TH; Das S
    J Phys Chem B; 2022 Dec; 126(49):10543-10553. PubMed ID: 36454705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration.
    Chen G; Sachar HS; Das S
    Soft Matter; 2018 Jun; 14(25):5246-5255. PubMed ID: 29888349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations.
    Etha SA; Sivasankar VS; Sachar HS; Das S
    Phys Chem Chem Phys; 2020 Jun; 22(24):13536-13553. PubMed ID: 32510082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massively Enhanced Electroosmotic Transport in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes.
    Chen G; Das S
    J Phys Chem B; 2017 Apr; 121(14):3130-3141. PubMed ID: 28322562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling Laws and Ionic Current Inversion in Polyelectrolyte-Grafted Nanochannels.
    Chen G; Das S
    J Phys Chem B; 2015 Oct; 119(39):12714-26. PubMed ID: 26359944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly enhanced liquid flows via thermoosmotic effects in soft and charged nanochannels.
    Maheedhara RS; Jing H; Sachar HS; Das S
    Phys Chem Chem Phys; 2018 Oct; 20(37):24300-24316. PubMed ID: 30211413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel.
    Li F; Jian Y; Chang L; Zhao G; Yang L
    Colloids Surf B Biointerfaces; 2016 Nov; 147():234-241. PubMed ID: 27518455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes.
    Maheedhara RS; Sachar HS; Jing H; Das S
    J Phys Chem B; 2018 Jul; 122(29):7450-7461. PubMed ID: 29969567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and electrostatic properties between pH-responsive polyelectrolyte brushes studied by augmented strong stretching theory.
    Sin JS
    J Chem Phys; 2022 Aug; 157(8):084902. PubMed ID: 36050036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poisson-Boltzmann theory of pH-sensitive (annealing) polyelectrolyte brush.
    Zhulina EB; Borisov OV
    Langmuir; 2011 Sep; 27(17):10615-33. PubMed ID: 21823583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic Surfactant Binding to pH-Responsive Polyelectrolyte Brush-Grafted Nanoparticles in Suspension and on Charged Surfaces.
    Riley JK; An J; Tilton RD
    Langmuir; 2015 Dec; 31(51):13680-9. PubMed ID: 26649483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overscreening, Co-Ion-Dominated Electroosmosis, and Electric Field Strength Mediated Flow Reversal in Polyelectrolyte Brush Functionalized Nanochannels.
    Pial TH; Sachar HS; Desai PR; Das S
    ACS Nano; 2021 Apr; 15(4):6507-6516. PubMed ID: 33797221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behavior and charge regulation of weak polyelectrolyte grafted layers.
    Gong P; Genzer J; Szleifer I
    Phys Rev Lett; 2007 Jan; 98(1):018302. PubMed ID: 17358511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating the ionic current rectification behavior of branched nanochannels by filling polyelectrolytes.
    Huang WC; Hsu JP
    J Colloid Interface Sci; 2019 Dec; 557():683-690. PubMed ID: 31563604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.