These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 27897317)

  • 21. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.
    Pizio O; SokoĊ‚owski S
    J Chem Phys; 2013 May; 138(20):204715. PubMed ID: 23742508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of ion partitioning on electrostatics of soft particles with volumetrically charged inner core coated with pH-regulated polyelectrolyte layer.
    Ganjizade A; Sadeghi A; Ashrafizadeh SN
    Colloids Surf B Biointerfaces; 2018 Oct; 170():129-135. PubMed ID: 29894833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical study on the massively augmented electro-osmotic water transport in polyelectrolyte brush functionalized nanoslits.
    Sivasankar VS; Etha SA; Sachar HS; Das S
    Phys Rev E; 2020 Jul; 102(1-1):013103. PubMed ID: 32794997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large Changes in Protonation of Weak Polyelectrolyte Brushes with Salt Concentration-Implications for Protein Immobilization.
    Ferrand-Drake Del Castillo G; Hailes RLN; Dahlin A
    J Phys Chem Lett; 2020 Jul; 11(13):5212-5218. PubMed ID: 32515599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microphase separation and aggregate self-assembly in brushes of oppositely charged polyelectrolytes triggered by ion pairing.
    Debais G; Tagliazucchi M
    J Chem Phys; 2020 Oct; 153(14):144903. PubMed ID: 33086835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.
    Zeng Z; Ai Y; Qian S
    Phys Chem Chem Phys; 2014 Feb; 16(6):2465-74. PubMed ID: 24358472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.
    Nap RJ; Tagliazucchi M; Szleifer I
    J Chem Phys; 2014 Jan; 140(2):024910. PubMed ID: 24437914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical self-consistent field theory study of the response of strong polyelectrolyte brushes to external electric fields.
    Tong C
    J Chem Phys; 2015 Aug; 143(5):054903. PubMed ID: 26254666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive gating in pH-responsive nanochannels as a result of ionic bridging and nanoconfinement.
    Lopez LG; Nap RJ
    Phys Chem Chem Phys; 2018 Jun; 20(24):16657-16665. PubMed ID: 29873656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration.
    Longo GS; de la Cruz MO; Szleifer I
    J Chem Phys; 2014 Sep; 141(12):124909. PubMed ID: 25273476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-atom molecular dynamics simulations of weak polyionic brushes: influence of charge density on the properties of polyelectrolyte chains, brush-supported counterions, and water molecules.
    Sachar HS; Pial TH; Chava BS; Das S
    Soft Matter; 2020 Aug; 16(33):7808-7822. PubMed ID: 32747883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On electrophoresis of a pH-regulated nanogel with ion partitioning effects.
    Majee PS; Bhattacharyya S; Dutta P
    Electrophoresis; 2019 Mar; 40(5):699-709. PubMed ID: 30168150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatically controlled swelling and adsorption of polyelectrolyte brush-grafted nanoparticles to the solid/liquid interface.
    Riley JK; Matyjaszewski K; Tilton RD
    Langmuir; 2014 Apr; 30(14):4056-65. PubMed ID: 24660872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrostatics and charge regulation in polyelectrolyte multilayered assembly.
    Cherstvy AG
    J Phys Chem B; 2014 May; 118(17):4552-60. PubMed ID: 24725100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Swelling and shrinking of two opposing polyelectrolyte brushes.
    Duan M; Chen G
    Phys Rev E; 2023 Feb; 107(2-1):024502. PubMed ID: 36932574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jan; 15(4):559-574. PubMed ID: 30520929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution.
    Ohshima H
    J Biomater Sci Polym Ed; 2017; 28(10-12):913-924. PubMed ID: 28112036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive.
    Wu B; Wang X; Yang J; Hua Z; Tian K; Kou R; Zhang J; Ye S; Luo Y; Craig VS; Zhang G; Liu G
    Sci Adv; 2016 Aug; 2(8):e1600579. PubMed ID: 27532049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters.
    Tagliazucchi M; Azzaroni O; Szleifer I
    J Am Chem Soc; 2010 Sep; 132(35):12404-11. PubMed ID: 20718436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass transfer of a neutral solute in polyelectrolyte grafted soft nanochannel with porous wall.
    Roy D; Bhattacharjee S; De S
    Electrophoresis; 2020 Apr; 41(7-8):578-587. PubMed ID: 31743466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.