These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 27897350)
1. Cooperativity in the Self-Assembly of the Guanine Nucleobase into Quartet and Ribbon Structures on Surfaces. Paragi G; Fonseca Guerra C Chemistry; 2017 Mar; 23(13):3042-3050. PubMed ID: 27897350 [TBL] [Abstract][Full Text] [Related]
2. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. Fonseca Guerra C; Zijlstra H; Paragi G; Bickelhaupt FM Chemistry; 2011 Nov; 17(45):12612-22. PubMed ID: 21997949 [TBL] [Abstract][Full Text] [Related]
3. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Yurenko YP; Novotný J; Sklenář V; Marek R Phys Chem Chem Phys; 2014 Feb; 16(5):2072-84. PubMed ID: 24343126 [TBL] [Abstract][Full Text] [Related]
4. Control of self-assembled 2D nanostructures by methylation of guanine. Bald I; Wang YG; Dong M; Rosen CB; Ravnsbaek JB; Zhuang GL; Gothelf KV; Wang JG; Besenbacher F Small; 2011 Apr; 7(7):939-49. PubMed ID: 21394906 [TBL] [Abstract][Full Text] [Related]
6. Tailoring the properties of quadruplex nucleobases for biological and nanomaterial applications. Novotný J; Yurenko YP; Kulhánek P; Marek R Phys Chem Chem Phys; 2014 Aug; 16(29):15241-8. PubMed ID: 24939211 [TBL] [Abstract][Full Text] [Related]
7. Self-assembly of artificial nucleobase 1H-benzimidazole-4,7-dione at the liquid/solid interface. Mamdouh W; Kelly RE; Dong M; Jacobsen MF; Ferapontova EE; Kantorovich LN; Gothelf KV; Besenbacher F J Phys Chem B; 2009 Jun; 113(25):8675-81. PubMed ID: 19485367 [TBL] [Abstract][Full Text] [Related]
8. Weak Supramolecular Interactions Governing Parallel and Antiparallel DNA Quadruplexes: Insights from Large-Scale Quantum Mechanics Analysis of Experimentally Derived Models. Yurenko YP; Novotný J; Marek R Chemistry; 2017 Apr; 23(23):5573-5584. PubMed ID: 28225208 [TBL] [Abstract][Full Text] [Related]
9. Charge splitters and charge transport junctions based on guanine quadruplexes. Sha R; Xiang L; Liu C; Balaeff A; Zhang Y; Zhang P; Li Y; Beratan DN; Tao N; Seeman NC Nat Nanotechnol; 2018 Apr; 13(4):316-321. PubMed ID: 29483600 [TBL] [Abstract][Full Text] [Related]
10. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Li XM; Zheng KW; Zhang JY; Liu HH; He YD; Yuan BF; Hao YH; Tan Z Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14581-6. PubMed ID: 26553979 [TBL] [Abstract][Full Text] [Related]
11. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine. Cheong VV; Lech CJ; Heddi B; Phan AT Angew Chem Int Ed Engl; 2016 Jan; 55(1):160-3. PubMed ID: 26563582 [TBL] [Abstract][Full Text] [Related]
12. Influence of base stacking geometry on the nature of excited states in G-quadruplexes: a time-dependent DFT study. Lech CJ; Phan AT; Michel-Beyerle ME; Voityuk AA J Phys Chem B; 2015 Mar; 119(9):3697-705. PubMed ID: 25654765 [TBL] [Abstract][Full Text] [Related]
13. Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations. Šponer J; Mládek A; Špačková N; Cang X; Cheatham TE; Grimme S J Am Chem Soc; 2013 Jul; 135(26):9785-96. PubMed ID: 23742743 [TBL] [Abstract][Full Text] [Related]
14. Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G·G·X·O tetrad. Cheong VV; Heddi B; Lech CJ; Phan AT Nucleic Acids Res; 2015 Dec; 43(21):10506-14. PubMed ID: 26400177 [TBL] [Abstract][Full Text] [Related]
15. Self-assembly of an alkylated guanosine derivative into ordered supramolecular nanoribbons in solution and on solid surfaces. Lena S; Brancolini G; Gottarelli G; Mariani P; Masiero S; Venturini A; Palermo V; Pandoli O; Pieraccini S; Samorì P; Spada GP Chemistry; 2007; 13(13):3757-64. PubMed ID: 17226871 [TBL] [Abstract][Full Text] [Related]
16. Mutual relationship between stacking and hydrogen bonding in DNA. Theoretical study of guanine-cytosine, guanine-5-methylcytosine, and their dimers. Acosta-Silva C; Branchadell V; Bertran J; Oliva A J Phys Chem B; 2010 Aug; 114(31):10217-27. PubMed ID: 20684646 [TBL] [Abstract][Full Text] [Related]
17. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. Brovarets' OO; Zhurakivsky RO; Hovorun DM J Comput Chem; 2014 Mar; 35(6):451-66. PubMed ID: 24382756 [TBL] [Abstract][Full Text] [Related]
18. A combined QM and MM investigation into guanine quadruplexes. Clay EH; Gould IR J Mol Graph Model; 2005 Oct; 24(2):138-46. PubMed ID: 16168688 [TBL] [Abstract][Full Text] [Related]
19. Effect of external electric field on H-bonding and π-stacking interactions in guanine aggregates. Jissy AK; Datta A Chemphyschem; 2012 Dec; 13(18):4163-72. PubMed ID: 23065813 [TBL] [Abstract][Full Text] [Related]
20. Homopairing possibilities of the DNA bases cytosine and guanine: an ab initio DFT study. Kelly RE; Lee YJ; Kantorovich LN J Phys Chem B; 2005 Nov; 109(46):22045-52. PubMed ID: 16853862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]