BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27897373)

  • 1. An Integrated Mass Spectrometry Based Approach to Probe the Structure of the Full-Length Wild-Type Tetrameric p53 Tumor Suppressor.
    Arlt C; Flegler V; Ihling CH; Schäfer M; Thondorf I; Sinz A
    Angew Chem Int Ed Engl; 2017 Jan; 56(1):275-279. PubMed ID: 27897373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry.
    Arlt C; Ihling CH; Sinz A
    Proteomics; 2015 Aug; 15(16):2746-55. PubMed ID: 25728495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Workflow for Structural Proteomics Studies Based on Cross-Linking/Mass Spectrometry with an MS/MS Cleavable Cross-Linker.
    Arlt C; Götze M; Ihling CH; Hage C; Schäfer M; Sinz A
    Anal Chem; 2016 Aug; 88(16):7930-7. PubMed ID: 27428000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural assessment of the full-length wild-type tumor suppressor protein p53 by mass spectrometry-guided computational modeling.
    Di Ianni A; Tüting C; Kipping M; Ihling CH; Köppen J; Iacobucci C; Arlt C; Kastritis PL; Sinz A
    Sci Rep; 2023 May; 13(1):8497. PubMed ID: 37231156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology.
    Sinz A; Arlt C; Chorev D; Sharon M
    Protein Sci; 2015 Aug; 24(8):1193-209. PubMed ID: 25970732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The First Zero-Length Mass Spectrometry-Cleavable Cross-Linker for Protein Structure Analysis.
    Hage C; Iacobucci C; Rehkamp A; Arlt C; Sinz A
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14551-14555. PubMed ID: 28876504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-Linking/Mass Spectrometry for Studying Protein Structures and Protein-Protein Interactions: Where Are We Now and Where Should We Go from Here?
    Sinz A
    Angew Chem Int Ed Engl; 2018 May; 57(22):6390-6396. PubMed ID: 29334167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Charge-State Distributions a Reliable Tool Describing Molecular Ensembles of Intrinsically Disordered Proteins by Native MS?
    Natalello A; Santambrogio C; Grandori R
    J Am Soc Mass Spectrom; 2017 Jan; 28(1):21-28. PubMed ID: 27730522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic disorder in proteins: a challenge for (un)structural biology met by ion mobility-mass spectrometry.
    Jurneczko E; Cruickshank F; Porrini M; Nikolova P; Campuzano ID; Morris M; Barran PE
    Biochem Soc Trans; 2012 Oct; 40(5):1021-6. PubMed ID: 22988858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.
    Langridge TD; Tarver MJ; Whitten ST
    Proteins; 2014 Apr; 82(4):668-78. PubMed ID: 24150971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural mass spectrometry decodes domain interaction and dynamics of the full-length Human Histone Deacetylase 2.
    Soloviev Z; Bullock JMA; James JMB; Sauerwein AC; Nettleship JE; Owens RJ; Hansen DF; Topf M; Thalassinos K
    Biochim Biophys Acta Proteins Proteom; 2022 Mar; 1870(3):140759. PubMed ID: 35051665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing Protein-Protein Interactions with Acidic Amino Acids Reactive Cross-Linkers.
    Liao QQ; Shu X; Sun W; Mandapaka H; Xie F; Zhang Z; Dai T; Wang S; Zhao J; Jiang H; Zhang L; Lin J; Li SW; Coin I; Yang F; Peng J; Li K; Wu H; Zhou F; Yang B
    Small; 2024 May; 20(20):e2308383. PubMed ID: 38073323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the dynamics of disorder.
    Fox SJ; Kannan S
    Prog Biophys Mol Biol; 2017 Sep; 128():57-62. PubMed ID: 28554553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sampling conformational space of intrinsically disordered proteins in explicit solvent: Comparison between well-tempered ensemble approach and solute tempering method.
    Han M; Xu J; Ren Y
    J Mol Graph Model; 2017 Mar; 72():136-147. PubMed ID: 28092832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of native mass spectrometry in studying intrinsically disordered proteins: A special focus on neurodegenerative diseases.
    Mitra G
    Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140260. PubMed ID: 31382021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collision-induced dissociative chemical cross-linking reagents and methodology: Applications to protein structural characterization using tandem mass spectrometry analysis.
    Soderblom EJ; Goshe MB
    Anal Chem; 2006 Dec; 78(23):8059-68. PubMed ID: 17134140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New force field on modeling intrinsically disordered proteins.
    Wang W; Ye W; Jiang C; Luo R; Chen HF
    Chem Biol Drug Des; 2014 Sep; 84(3):253-69. PubMed ID: 24589355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native mass spectrometry for the investigation of protein structural (dis)order.
    Santambrogio C; Ponzini E; Grandori R
    Biochim Biophys Acta Proteins Proteom; 2022 Oct; 1870(10):140828. PubMed ID: 35926718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the disordered conformational ensembles of the p53 transactivation domain by cancer-associated mutations.
    Ganguly D; Chen J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004247. PubMed ID: 25897952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept.
    Uversky VN
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27834926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.