These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 278976)

  • 1. Functional consequences of ligand-dependent conformational changes in trypsin-solubilized and in membrane particle constrained-acetylcholinesterase.
    Pattison S; Bernhard S
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3613-7. PubMed ID: 278976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of "peripheral" site ligands on Torpedo and chicken acetylcholinesterase.
    Eichler J; Anselment A; Sussman JL; Massoulié J; Silman I
    Mol Pharmacol; 1994 Feb; 45(2):335-40. PubMed ID: 8114681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The time dependent UV resonance Raman spectra, conformation, and biological activity of acetylcholine analogues upon binding to acetylcholine binding proteins.
    Wilson KJ; McNamee MG; Peticolas WL
    J Biomol Struct Dyn; 1991 Dec; 9(3):489-509. PubMed ID: 1726137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling.
    Van Belle D; De Maria L; Iurcu G; Wodak SJ
    J Mol Biol; 2000 May; 298(4):705-26. PubMed ID: 10788331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
    Szegletes T; Mallender WD; Rosenberry TL
    Biochemistry; 1998 Mar; 37(12):4206-16. PubMed ID: 9521743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL
    Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase.
    Harel M; Schalk I; Ehret-Sabatier L; Bouet F; Goeldner M; Hirth C; Axelsen PH; Silman I; Sussman JL
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9031-5. PubMed ID: 8415649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
    Szegletes T; Mallender WD; Thomas PJ; Rosenberry TL
    Biochemistry; 1999 Jan; 38(1):122-33. PubMed ID: 9890890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of a metastable state of Torpedo californica acetylcholinesterase by chemical chaperones.
    Millard CB; Shnyrov VL; Newstead S; Shin I; Roth E; Silman I; Weiner L
    Protein Sci; 2003 Oct; 12(10):2337-47. PubMed ID: 14500892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation and inactivation of acetylcholinesterase by metal ions.
    Tomlinson G; Mutus B; McLennan I
    Can J Biochem; 1981 Sep; 59(9):728-35. PubMed ID: 7317819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site selectivity of fluorescent bisquaternary phenanthridinium ligands for acetylcholinesterase.
    Berman HA; Decker MM; Nowak MW; Leonard KJ; McCauley M; Baker WM; Taylor P
    Mol Pharmacol; 1987 Jun; 31(6):610-6. PubMed ID: 3600605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative study of membrane-bound acetylcholinesterase in guinea pig and rabbit brains].
    Miliutin AA; Aksentsev SL; Baraĭ VN; Arinchin NI; Konev SV
    Biofizika; 1975; 20(4):638-41. PubMed ID: 1201297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholinesterase: role of the enzyme's charge distribution in steering charged ligands toward the active site.
    Antosiewicz J; Wlodek ST; McCammon JA
    Biopolymers; 1996 Jul; 39(1):85-94. PubMed ID: 8924629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zn2+ regulation of ornithine transcarbamoylase. I. Mechanism of action.
    Lee S; Shen WH; Miller AW; Kuo LC
    J Mol Biol; 1990 Jan; 211(1):255-69. PubMed ID: 2105398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of di-iodinated 125I-labelled alpha-bungarotoxin and reversible cholinergic ligands with intact synaptic acetylcholine receptors on isolated skeletal-muscle fibres from the rat.
    Darveniza P; Morgan-Hughes JA; Thompson EJ
    Biochem J; 1979 Sep; 181(3):545-57. PubMed ID: 518540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Retarded conformational transitions in muscle glycogen phosphorylase b induced by specific ligands].
    Kurganov BI; Shchors EI; Livanova NB; Eronina TB; Chebotareva NA
    Biokhimiia; 1994 Apr; 59(4):559-67. PubMed ID: 8018778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site.
    Rosenberry TL; Rabl CR; Neumann E
    Biochemistry; 1996 Jan; 35(3):685-90. PubMed ID: 8547248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinities of bispyridinium non-oxime compounds to [(3)H]epibatidine binding sites of Torpedo californica nicotinic acetylcholine receptors depend on linker length.
    Niessen KV; Seeger T; Tattersall JE; Timperley CM; Bird M; Green C; Thiermann H; Worek F
    Chem Biol Interact; 2013 Dec; 206(3):545-54. PubMed ID: 24157926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow conformational transitions of muscle glycogen phosphorylase b induced by specific ligands.
    Kurganov BI; Schors EI
    Biochem Mol Biol Int; 1994 May; 33(1):65-72. PubMed ID: 8081214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent kinetic complexities in cholinesterase-catalyzed reactions.
    Masson P
    Biochemistry (Mosc); 2012 Oct; 77(10):1147-61. PubMed ID: 23157295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.