BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27897987)

  • 1. Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary.
    Shang P; Shen F
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27897987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-source high-resolution satellite products in Yangtze Estuary: cross-comparisons and impacts of signal-to-noise ratio and spatial resolution.
    Tang R; Shen F; Pan Y; Ruddick K; Shang P
    Opt Express; 2019 Mar; 27(5):6426-6441. PubMed ID: 30876228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistency of Suspended Particulate Matter Concentration in Turbid Water Retrieved from Sentinel-2 MSI and Landsat-8 OLI Sensors.
    Wang H; Wang J; Cui Y; Yan S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33670917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of 6SV to remove skylight reflected at the air-water interface: Application to atmospheric correction of Landsat 8 OLI imagery in inland waters.
    Lu Z; Li J; Shen Q; Zhang B; Zhang H; Zhang F; Wang S
    PLoS One; 2018; 13(8):e0202883. PubMed ID: 30142203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration.
    Chen S; Liu J; Huang W; Chen R
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29494540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple optical model to estimate suspended particulate matter in Yellow River Estuary.
    Qiu Z
    Opt Express; 2013 Nov; 21(23):27891-904. PubMed ID: 24514305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring.
    Wu M; Huang W; Niu Z; Wang C
    Int J Environ Res Public Health; 2015 Aug; 12(8):9920-37. PubMed ID: 26308017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake.
    Zheng Z; Ren J; Li Y; Huang C; Liu G; Du C; Lyu H
    Sci Total Environ; 2016 Dec; 573():39-54. PubMed ID: 27552729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region.
    Wei X; Gu X; Meng Q; Yu T; Zhou X; Wei Z; Jia K; Wang C
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques.
    Eugenio F; Marcello J; Martin J; Rodríguez-Esparragón D
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction of satellite imagery over mountainous terrain.
    Richter R
    Appl Opt; 1998 Jun; 37(18):4004-15. PubMed ID: 18273372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM data.
    Onderka M; Pekárová P
    Sci Total Environ; 2008 Jul; 397(1-3):238-43. PubMed ID: 18433839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decline of suspended particulate matter concentrations in Lake Taihu from 1984 to 2020: observations from Landsat TM and OLI.
    Yin Z; Li J; Liu Y; Zhang F; Wang S; Xie Y; Gao M
    Opt Express; 2022 Jun; 30(13):22572-22589. PubMed ID: 36224952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration.
    Shen F; Verhoef W
    Opt Express; 2010 Jun; 18(12):12653-62. PubMed ID: 20588392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Qualitative Dynamics of Suspended Particulate Matter in the Changjiang Estuary from Geostationary Ocean Color Images: An Empirical, Regional Modeling Approach.
    Shang D; Xu H
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric correction of satellite ocean color imagery: the black pixel assumption.
    Siegel DA; Wang M; Maritorena S; Robinson W
    Appl Opt; 2000 Jul; 39(21):3582-91. PubMed ID: 18349929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human impact on suspended particulate matter in the Yellow River Estuary, China: Evidence from remote sensing data fusion using an improved spatiotemporal fusion method.
    Li P; Ke Y; Wang D; Ji H; Chen S; Chen M; Lyu M; Zhou D
    Sci Total Environ; 2021 Jan; 750():141612. PubMed ID: 33182189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations of suspended particulate concentration and composition in Chinese lakes observed from Sentinel-3A OLCI images.
    Xue K; Ma R; Shen M; Li Y; Duan H; Cao Z; Wang D; Xiong J
    Sci Total Environ; 2020 Jun; 721():137774. PubMed ID: 32172123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry.
    Vanhellemont Q
    Opt Express; 2020 Sep; 28(20):29948-29965. PubMed ID: 33114883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of suspended particulate matter in turbid coastal waters: application to hyperspectral satellite imagery.
    Zhao J; Cao W; Xu Z; Ye H; Yang Y; Wang G; Zhou W; Sun Z
    Opt Express; 2018 Apr; 26(8):10476-10493. PubMed ID: 29715984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.